Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Methods Mol Biol ; 2615: 191-201, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36807793

RESUMEN

TWINKLE is an essential helicase that unwinds the duplex mitochondrial genome during DNA replication. In vitro assays using purified recombinant forms of the protein have been an instrumental tool for gaining mechanistic insights about TWINKLE and its function at the replication fork. Here we present methods to probe the helicase and ATPase activities of TWINKLE. For the helicase assay, TWINKLE is incubated with a radiolabeled oligonucleotide annealed to an M13mp18 single-stranded DNA template. TWINKLE will displace the oligonucleotide, which is then visualized by gel electrophoresis and autoradiography. To measure the ATPase activity of TWINKLE, a colorimetric assay is used, which quantifies the release of phosphate upon ATP hydrolysis by TWINKLE.


Asunto(s)
Replicación del ADN , Proteínas Mitocondriales , Proteínas Mitocondriales/metabolismo , ADN Helicasas/metabolismo , ADN de Cadena Simple , Oligonucleótidos , ADN Mitocondrial/genética
2.
Methods Mol Biol ; 2192: 1-20, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33230761

RESUMEN

Human mitochondrial DNA is a small circular double-stranded molecule that is essential for cellular energy production. A specialized protein machinery replicates the mitochondrial genome, with DNA polymerase γ carrying out synthesis of both strands. According to the prevailing mitochondrial DNA replication model, the two strands are replicated asynchronously, with the leading heavy-strand initiating first, followed by the lagging light-strand. By using purified recombinant forms of the replication proteins and synthetic DNA templates, it is possible to reconstitute mitochondrial DNA replication in vitro. Here we provide details on how to differentially reconstitute replication of the leading- and lagging-strands.


Asunto(s)
Replicación del ADN/genética , ADN Mitocondrial/química , ADN Mitocondrial/genética , ADN Polimerasa gamma/química , ADN de Cadena Simple/química , Proteínas de Unión al ADN/química , Genoma Mitocondrial , Humanos , Técnicas In Vitro , Mitocondrias/metabolismo , Proteínas Mitocondriales/química , Proteínas Recombinantes/química
3.
PLoS Genet ; 16(12): e1009242, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33315859

RESUMEN

Deletions and duplications in mitochondrial DNA (mtDNA) cause mitochondrial disease and accumulate in conditions such as cancer and age-related disorders, but validated high-throughput methodology that can readily detect and discriminate between these two types of events is lacking. Here we establish a computational method, MitoSAlt, for accurate identification, quantification and visualization of mtDNA deletions and duplications from genomic sequencing data. Our method was tested on simulated sequencing reads and human patient samples with single deletions and duplications to verify its accuracy. Application to mouse models of mtDNA maintenance disease demonstrated the ability to detect deletions and duplications even at low levels of heteroplasmy.


Asunto(s)
ADN Mitocondrial/genética , Eliminación de Gen , Duplicación de Gen , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Análisis de Secuencia de ADN/métodos , Animales , ADN Mitocondrial/química , Secuenciación de Nucleótidos de Alto Rendimiento/normas , Ratones , Reproducibilidad de los Resultados , Análisis de Secuencia de ADN/normas
4.
Neurol Genet ; 6(1): e391, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-32042919

RESUMEN

OBJECTIVE: To determine the pathogenicity of a novel POLG mutation in a man with late-onset autosomal recessive progressive external ophthalmoplegia using clinical, molecular, and biochemical analyses. METHODS: A multipronged approach with detailed neurologic examinations, muscle biopsy analyses, molecular genetic studies, and in vitro biochemical characterization. RESULTS: The patient had slowly progressive bilateral ptosis and severely reduced horizontal and vertical gaze. Muscle biopsy showed slight variability in muscle fiber size, scattered ragged red fibers, and partial cytochrome c oxidase deficiency. Biallelic mutations were identified in the POLG gene encoding the catalytic A subunit of POLγ. One allele carried a novel mutation in the exonuclease domain (c.590T>C; p.F197S), and the other had a previously characterized null mutation in the polymerase domain (c.2740A>C; p.T914P). Biochemical characterization revealed that the novel F197S mutant protein had reduced exonuclease and DNA polymerase activities and confirmed that T914P was inactive. By deep sequencing of mitochondrial DNA (mtDNA) extracted from muscle, multiple large-scale rearrangements were mapped and quantified. CONCLUSIONS: The patient's phenotype was caused by biallelic POLG mutations, resulting in one inactive POLγA protein (T914P) and one with decreased polymerase and exonuclease activity (F197S). The reduction in polymerase activity explains the presence of multiple pathogenic large-scale deletions in the patient's mtDNA.

5.
Nat Commun ; 10(1): 759, 2019 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-30770810

RESUMEN

Mitochondrial DNA (mtDNA) deletions are associated with mitochondrial disease, and also accumulate during normal human ageing. The mechanisms underlying mtDNA deletions remain unknown although several models have been proposed. Here we use deep sequencing to characterize abundant mtDNA deletions in patients with mutations in mitochondrial DNA replication factors, and show that these have distinct directionality and repeat characteristics. Furthermore, we recreate the deletion formation process in vitro using only purified mitochondrial proteins and defined DNA templates. Based on our in vivo and in vitro findings, we conclude that mtDNA deletion formation involves copy-choice recombination during replication of the mtDNA light strand.


Asunto(s)
ADN Mitocondrial/genética , Eliminación de Secuencia/genética , Southern Blotting , Replicación del ADN/genética , Humanos , Proteínas Mitocondriales/genética , Mutación/genética
6.
EMBO Rep ; 20(4)2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30804013

RESUMEN

Ubiquitin domain-containing protein 1 (UBTD1) is highly evolutionary conserved and has been described to interact with E2 enzymes of the ubiquitin-proteasome system. However, its biological role and the functional significance of this interaction remain largely unknown. Here, we demonstrate that depletion of UBTD1 drastically affects the mechanical properties of epithelial cancer cells via RhoA activation and strongly promotes their aggressiveness. On a stiff matrix, UBTD1 expression is regulated by cell-cell contacts, and the protein is associated with ß-catenin at cell junctions. Yes-associated protein (YAP) is a major cell mechano-transducer, and we show that UBTD1 is associated with components of the YAP degradation complex. Interestingly, UBTD1 promotes the interaction of YAP with its E3 ubiquitin ligase ß-TrCP Consequently, in cancer cells, UBTD1 depletion decreases YAP ubiquitylation and triggers robust ROCK2-dependent YAP activation and downstream signaling. Data from lung and prostate cancer patients further corroborate the in cellulo results, confirming that low levels of UBTD1 are associated with poor patient survival, suggesting that biological functions of UBTD1 could be beneficial in limiting cancer progression.


Asunto(s)
Susceptibilidad a Enfermedades , Factor I del Crecimiento Similar a la Insulina/metabolismo , Neoplasias/etiología , Neoplasias/metabolismo , Ubiquitinas/metabolismo , Adhesión Celular , Proteínas de Ciclo Celular/metabolismo , Progresión de la Enfermedad , Regulación Neoplásica de la Expresión Génica , Vía de Señalización Hippo , Humanos , Mecanotransducción Celular , Modelos Biológicos , Neoplasias/mortalidad , Neoplasias/patología , Pronóstico , Unión Proteica , Procesamiento Proteico-Postraduccional , Proteínas Serina-Treonina Quinasas/metabolismo , Transducción de Señal , Factores de Transcripción/metabolismo , beta Catenina/metabolismo , Proteínas con Repetición de beta-Transducina/metabolismo , Proteína de Unión al GTP rhoA/metabolismo
7.
PLoS Genet ; 15(1): e1007781, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30605451

RESUMEN

Human mitochondrial DNA (mtDNA) replication is first initiated at the origin of H-strand replication. The initiation depends on RNA primers generated by transcription from an upstream promoter (LSP). Here we reconstitute this process in vitro using purified transcription and replication factors. The majority of all transcription events from LSP are prematurely terminated after ~120 nucleotides, forming stable R-loops. These nascent R-loops cannot directly prime mtDNA synthesis, but must first be processed by RNase H1 to generate 3'-ends that can be used by DNA polymerase γ to initiate DNA synthesis. Our findings are consistent with recent studies of a knockout mouse model, which demonstrated that RNase H1 is required for R-loop processing and mtDNA maintenance in vivo. Both R-loop formation and DNA replication initiation are stimulated by the mitochondrial single-stranded DNA binding protein. In an RNase H1 deficient patient cell line, the precise initiation of mtDNA replication is lost and DNA synthesis is initiated from multiple sites throughout the mitochondrial control region. In combination with previously published in vivo data, the findings presented here suggest a model, in which R-loop processing by RNase H1 directs origin-specific initiation of DNA replication in human mitochondria.


Asunto(s)
Replicación del ADN/genética , ADN Mitocondrial/biosíntesis , Mitocondrias/genética , Ribonucleasa H/genética , Animales , ADN Polimerasa gamma/genética , ADN Mitocondrial/genética , Proteínas de Unión al ADN/genética , Humanos , Ratones , Origen de Réplica/genética
8.
Nucleic Acids Res ; 46(18): 9471-9483, 2018 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-30102370

RESUMEN

The role of Ribonuclease H1 (RNase H1) during primer removal and ligation at the mitochondrial origin of light-strand DNA synthesis (OriL) is a key, yet poorly understood, step in mitochondrial DNA maintenance. Here, we reconstitute the replication cycle of L-strand synthesis in vitro using recombinant mitochondrial proteins and model OriL substrates. The process begins with initiation of DNA replication at OriL and ends with primer removal and ligation. We find that RNase H1 partially removes the primer, leaving behind the last one to three ribonucleotides. These 5'-end ribonucleotides disturb ligation, a conclusion which is supported by analysis of RNase H1-deficient patient cells. A second nuclease is therefore required to remove the last ribonucleotides and we demonstrate that Flap endonuclease 1 (FEN1) can execute this function in vitro. Removal of RNA primers at OriL thus depends on a two-nuclease model, which in addition to RNase H1 requires FEN1 or a FEN1-like activity. These findings define the role of RNase H1 at OriL and help to explain the pathogenic consequences of disease causing mutations in RNase H1.


Asunto(s)
ADN Mitocondrial/genética , Endonucleasas de ADN Solapado/genética , Proteínas Mitocondriales/genética , Ribonucleasa H/genética , Replicación del ADN/genética , Humanos , Mitocondrias/genética , ARN , Proteínas Recombinantes/genética , Ribonucleótidos/genética
9.
Acta Biochim Biophys Sin (Shanghai) ; 50(7): 718-722, 2018 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-29796650

RESUMEN

G-quadruplexes are higher-order nucleic acid structures formed in G-rich sequences in DNA or RNA. G-quadruplexes are distributed in many locations in the human genome, including promoter regions, and are viewed as promising therapeutic targets. Uncoupling protein-1 (UCP1) is a mitochondrial thermogenic gene critical for energy expenditure in the form of heat in the brown adipose tissue. UCP1 is only expressed during brown fat cell differentiation and is a candidate target for treating obesity. However, the regulation of UCP1 expression is not clear. We reported here that a G-quadruplex forming sequence exists in the promoter of UCP1. The 5,10,15,20-tetra(N-methyl-4-pyridyl) porphyrin (TMPyP4) enhanced cellular expression of UCP1 and destabilized the G-quadruplex formed by the sequence from the promoter of UCP1. Mutations in the G-quadruplex regulated the cellular activity of UCP1 promoter as evidenced by a UCP1-promoter luciferase assay. These results suggest that G-quadruplex structure is a potential target to regulate the expression of UCP1.


Asunto(s)
ADN/química , G-Cuádruplex , Regiones Promotoras Genéticas/genética , Proteína Desacopladora 1/genética , Secuencia de Bases , ADN/genética , Regulación de la Expresión Génica/efectos de los fármacos , Células HEK293 , Humanos , Mutación , Porfirinas/farmacología
10.
Nat Commun ; 9(1): 1202, 2018 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-29572490

RESUMEN

Replication of mammalian mitochondrial DNA (mtDNA) is an essential process that requires high fidelity and control at multiple levels to ensure proper mitochondrial function. Mutations in the mitochondrial genome maintenance exonuclease 1 (MGME1) gene were recently reported in mitochondrial disease patients. Here, to study disease pathophysiology, we generated Mgme1 knockout mice and report that homozygous knockouts develop depletion and multiple deletions of mtDNA. The mtDNA replication stalling phenotypes vary dramatically in different tissues of Mgme1 knockout mice. Mice with MGME1 deficiency accumulate a long linear subgenomic mtDNA species, similar to the one found in mtDNA mutator mice, but do not develop progeria. This finding resolves a long-standing debate by showing that point mutations of mtDNA are the main cause of progeria in mtDNA mutator mice. We also propose a role for MGME1 in the regulation of replication and transcription termination at the end of the control region of mtDNA.


Asunto(s)
ADN Mitocondrial/genética , Exodesoxirribonucleasas/fisiología , Eliminación de Gen , Progeria/genética , Animales , Replicación del ADN , Exodesoxirribonucleasas/genética , Femenino , Fibroblastos/metabolismo , Biblioteca de Genes , Células HeLa , Homocigoto , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Mitocondrias/metabolismo , Fenotipo , Mutación Puntual , Motilidad Espermática , Distribución Tisular , Transcripción Genética
11.
Nucleic Acids Res ; 44(12): 5861-71, 2016 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-27220468

RESUMEN

Recently, MGME1 was identified as a mitochondrial DNA nuclease with preference for single-stranded DNA (ssDNA) substrates. Loss-of-function mutations in patients lead to mitochondrial disease with DNA depletion, deletions, duplications and rearrangements. Here, we assess the biochemical role of MGME1 in the processing of flap intermediates during mitochondrial DNA replication using reconstituted systems. We show that MGME1 can cleave flaps to enable efficient ligation of newly replicated DNA strands in combination with POLγ. MGME1 generates a pool of imprecisely cut products (short flaps, nicks and gaps) that are converted to ligatable nicks by POLγ through extension or excision of the 3'-end strand. This is dependent on the 3'-5' exonuclease activity of POLγ which limits strand displacement activity and enables POLγ to back up to the nick by 3'-5' degradation. We also demonstrate that POLγ-driven strand displacement is sufficient to generate DNA- but not RNA-flap substrates suitable for MGME1 cleavage and ligation during replication. Our findings have implications for RNA primer removal models, the 5'-end processing of nascent DNA at OriH, and DNA repair.


Asunto(s)
Replicación del ADN , ADN Mitocondrial/genética , ADN de Cadena Simple/genética , ADN Polimerasa Dirigida por ADN/genética , Exodesoxirribonucleasas/genética , Sistema Libre de Células/metabolismo , Clonación Molecular , División del ADN , ADN Polimerasa gamma , ADN Mitocondrial/metabolismo , ADN de Cadena Simple/metabolismo , ADN Polimerasa Dirigida por ADN/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Exodesoxirribonucleasas/metabolismo , Expresión Génica , Humanos , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
12.
DNA Repair (Amst) ; 34: 28-38, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26303841

RESUMEN

The small circular mitochondrial genome in mammalian cells is replicated by a dedicated replisome, defects in which can cause mitochondrial disease in humans. A fundamental step in mitochondrial DNA (mtDNA) replication and maintenance is the removal of the RNA primers needed for replication initiation. The nucleases RNase H1, FEN1, DNA2, and MGME1 have been implicated in this process. Here we review the role of these nucleases in the light of primer removal pathways in mitochondria, highlight associations with disease, as well as consider the implications for mtDNA replication initiation.


Asunto(s)
Replicación del ADN , ADN Mitocondrial/biosíntesis , ARN/metabolismo , Animales , ADN Helicasas/metabolismo , Exodesoxirribonucleasas/metabolismo , Endonucleasas de ADN Solapado/metabolismo , Genoma Mitocondrial , Humanos , Enfermedades Mitocondriales/enzimología , Ribonucleasa H/metabolismo
13.
Nucleic Acids Res ; 43(19): 9262-75, 2015 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-26253742

RESUMEN

The majority of mitochondrial DNA replication events are terminated prematurely. The nascent DNA remains stably associated with the template, forming a triple-stranded displacement loop (D-loop) structure. However, the function of the D-loop region of the mitochondrial genome remains poorly understood. Using a comparative genomics approach we here identify two closely related 15 nt sequence motifs of the D-loop, strongly conserved among vertebrates. One motif is at the D-loop 5'-end and is part of the conserved sequence block 1 (CSB1). The other motif, here denoted coreTAS, is at the D-loop 3'-end. Both these sequences may prevent transcription across the D-loop region, since light and heavy strand transcription is terminated at CSB1 and coreTAS, respectively. Interestingly, the replication of the nascent D-loop strand, occurring in a direction opposite to that of heavy strand transcription, is also terminated at coreTAS, suggesting that coreTAS is involved in termination of both transcription and replication. Finally, we demonstrate that the loading of the helicase TWINKLE at coreTAS is reversible, implying that this site is a crucial component of a switch between D-loop formation and full-length mitochondrial DNA replication.


Asunto(s)
ADN Helicasas/metabolismo , Replicación del ADN , ADN Mitocondrial/biosíntesis , ADN Mitocondrial/química , Proteínas Mitocondriales/metabolismo , Animales , Secuencia de Bases , Secuencia Conservada , Células HeLa , Humanos , Secuencias Invertidas Repetidas , Ratones , Motivos de Nucleótidos , ARN Citoplasmático Pequeño/química , ARN Citoplasmático Pequeño/genética , Secuencias Reguladoras de Ácidos Nucleicos , Partícula de Reconocimiento de Señal/química , Partícula de Reconocimiento de Señal/genética , Terminación de la Transcripción Genética , Vertebrados/genética
14.
Nat Commun ; 6: 7303, 2015 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-26095671

RESUMEN

Mitochondrial DNA (mtDNA) polymerase γ (POLγ) harbours a 3'-5' exonuclease proofreading activity. Here we demonstrate that this activity is required for the creation of ligatable ends during mtDNA replication. Exonuclease-deficient POLγ fails to pause on reaching a downstream 5'-end. Instead, the enzyme continues to polymerize into double-stranded DNA, creating an unligatable 5'-flap. Disease-associated mutations can both increase and decrease exonuclease activity and consequently impair DNA ligation. In mice, inactivation of the exonuclease activity causes an increase in mtDNA mutations and premature ageing phenotypes. These mutator mice also contain high levels of truncated, linear fragments of mtDNA. We demonstrate that the formation of these fragments is due to impaired ligation, causing nicks near the origin of heavy-strand DNA replication. In the subsequent round of replication, the nicks lead to double-strand breaks and linear fragment formation.


Asunto(s)
Replicación del ADN , ADN Mitocondrial/metabolismo , ADN Polimerasa Dirigida por ADN/metabolismo , Animales , Southern Blotting , ADN Polimerasa gamma , ADN Polimerasa Dirigida por ADN/genética , Exodesoxirribonucleasas/metabolismo , Humanos , Ratones , Reacción en Cadena de la Polimerasa , Células Sf9 , Spodoptera
15.
Biochem Biophys Res Commun ; 443(1): 7-12, 2014 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-24211586

RESUMEN

UBTD1 is a previously uncharacterized ubiquitin-like (UbL) domain containing protein with high homology to the mitochondrial Dc-UbP/UBTD2 protein. Here we show that UBTD1 and UBTD2 belong to a family of proteins that is conserved through evolution and found in metazoa, funghi, and plants. To gain further insight into the function of UBTD1, we screened for interacting proteins. In a yeast-2-hybrid (Y2H) screen, we identified several proteins involved in the ubiquitylation pathway, including the UBE2D family of E2 ubiquitin conjugating enzymes. An affinity capture screen for UBTD1 interacting proteins in whole cell extracts also identified members of the UBE2D family. Biochemical characterization of recombinant UBTD1 and UBE2D demonstrated that the two proteins form a stable, stoichiometric complex that can be purified to near homogeneity. We discuss the implications of these findings in light of the ubiquitin proteasome system (UPS).


Asunto(s)
Enzimas Ubiquitina-Conjugadoras/metabolismo , Ubiquitinas/metabolismo , Secuencia de Aminoácidos , Secuencia Conservada , Humanos , Redes y Vías Metabólicas , Datos de Secuencia Molecular , Filogenia , Estructura Terciaria de Proteína , Técnicas del Sistema de Dos Híbridos , Enzimas Ubiquitina-Conjugadoras/genética , Ubiquitinación , Ubiquitinas/clasificación , Ubiquitinas/genética
16.
Nucleic Acids Res ; 40(20): 10334-44, 2012 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-22965135

RESUMEN

In human mitochondria the transcription machinery generates the RNA primers needed for initiation of DNA replication. A critical feature of the leading-strand origin of mitochondrial DNA replication is a CG-rich element denoted conserved sequence block II (CSB II). During transcription of CSB II, a G-quadruplex structure forms in the nascent RNA, which stimulates transcription termination and primer formation. Previous studies have shown that the newly synthesized primers form a stable and persistent RNA-DNA hybrid, a R-loop, near the leading-strand origin of DNA replication. We here demonstrate that the unusual behavior of the RNA primer is explained by the formation of a stable G-quadruplex structure, involving the CSB II region in both the nascent RNA and the non-template DNA strand. Based on our data, we suggest that G-quadruplex formation between nascent RNA and the non-template DNA strand may be a regulated event, which decides the fate of RNA primers and ultimately the rate of initiation of DNA synthesis in human mitochondria.


Asunto(s)
ADN Mitocondrial/química , G-Cuádruplex , ARN/química , Dicroismo Circular , Replicación del ADN , ADN Mitocondrial/biosíntesis , Humanos , ARN Mitocondrial , Terminación de la Transcripción Genética , Transcripción Genética
17.
Proc Natl Acad Sci U S A ; 107(37): 16072-7, 2010 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-20798345

RESUMEN

The human mitochondrial transcription machinery generates the primers required for initiation of leading-strand DNA replication. According to one model, the 3' end of the primer is defined by transcription termination at conserved sequence block II (CSB II) in the mitochondrial DNA control region. We here demonstrate that this site-specific termination event is caused by G-quadruplex structures formed in nascent RNA upon transcription of CSB II. We also demonstrate that a poly-dT stretch downstream of CSB II has a modest stimulatory effect on the termination efficiency. The mechanism is reminiscent of Rho-independent transcription termination in prokaryotes, with the exception that a G-quadruplex structure replaces the hairpin loop formed in bacterial mRNA during transcription of terminator sequences.


Asunto(s)
Cartilla de ADN/genética , G-Cuádruplex , Mitocondrias/química , ARN/química , Regiones Terminadoras Genéticas , Transcripción Genética , Secuencia Conservada , Mitocondrias/genética , Datos de Secuencia Molecular
18.
Brain Res ; 1266: 8-17, 2009 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-19232326

RESUMEN

Consistent with the common role of Nkx6 family members in specifying motor neuron identity, we show that over-expression of Drosophila Nkx6 results in an increase in the number of Fasiclin II expressing motor neurons in the intersegmental nerve B branch. Our dissection of the regulatory domains of Nkx6 using chimeric cell culture assays revealed the presence of two repression domains and a single activation domain within this transcription factor. As well as its conserved homeodomain, Nkx6 also has a candidate Engrailed homology 1 (Eh1) domain that is conserved amongst all NKx6 family members, through which vertebrate NKx6-type proteins bind the co-repressor, Groucho (Muhr, J., et al., 2001. Groucho-mediated transcriptional repression establishes progenitor cell pattern and neuronal fate in the ventral neural tube. Cell 104, 861-73). Paralleling our previous reports that the Eh1 domain of Vnd and Ind are ineffective in Gal4 chimeric assays (Von Ohlen, T., Syu, L.J., Mellerick, D.M., 2007. Conserved properties of the Drosophila homeodomain protein. Ind. Mech. Dev. 124, 925-934; Yu, Z., et al., 2005. Contextual interactions determine whether the Drosophila homeodomain protein, Vnd, acts as a repressor or activator. Nucleic Acids Res. 33, 1-12), we found that the Eh1 domain of Nkx6 did not significantly enhance repression in Gal4 chimeric assays. However, when we performed co-immunoprecipitation analyses, we found that Nkx6 can bind Groucho and that binding of Nkx6 to this co-repressor is modulated intra-molecularly. Full length Nkx6 interacted with Groucho poorly, because sequences at the carboxyl terminal of NKx6 interfere with Groucho binding, despite the presence of the Eh1 domain. In contrast, a carboxyl terminal Nkx6 deletion bound Groucho strongly. In keeping with the presence of an activation domain within Nkx6, we also report that Nkx6 can activate reporter expression driven by an Nkx6.1 enhancer that mediates auto-activation in transient transfection assays. The presence of multiple repression domains in Nkx6 supports Nkx6's role as a repressor, potentially using both Groucho-dependent and independent mechanisms. Thus, Nkx6 likely functions as a dual regulator in embryos.


Asunto(s)
Proteínas de Drosophila/metabolismo , Expresión Génica , Neuronas Motoras/metabolismo , Factores de Transcripción/metabolismo , Animales , Animales Modificados Genéticamente , Secuencia de Bases , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Células COS , Línea Celular , Chlorocebus aethiops , Drosophila , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Proteínas de Homeodominio/metabolismo , Humanos , Mutación , ARN Mensajero/metabolismo , Proteínas Represoras/metabolismo , Factores de Transcripción/química , Factores de Transcripción/genética
19.
Mol Cell ; 30(4): 498-506, 2008 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-18498751

RESUMEN

The final outcome of protein polyubiquitylation is often proteasome-mediated proteolysis, meaning that "proofreading" of ubiquitylation by ubiquitin proteases (UBPs) is crucial. Transcriptional arrest can trigger ubiquitin-mediated proteolysis of RNA polymerase II (RNAPII) so a UBP reversing RNAPII ubiquitylation might be expected. Here, we show that Ubp3 deubiquitylates RNAPII in yeast. Genetic characterization of ubp3 cells is consistent with a role in elongation, and Ubp3 can be purified with RNAPII, Def1, and the elongation factors Spt5 and TFIIF. This Ubp3 complex deubiquitylates both mono- and polyubiquitylated RNAPII in vitro, and ubp3 cells have elevated levels of ubiquitylated RNAPII in vivo. Moreover, RNAPII is degraded faster in a ubp3 mutant after UV irradiation. Problems posed by damage-arrested RNAPII are thought to be resolved either by removing the damage or degrading the polymerase. In agreement with this, cells with compromised DNA repair are better equipped to survive UV damage when UPB3 is deleted.


Asunto(s)
Endopeptidasas/metabolismo , ARN Polimerasa II/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Antimetabolitos/metabolismo , Supervivencia Celular , Reparación del ADN , Endopeptidasas/genética , Humanos , ARN Polimerasa II/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Factores de Elongación Transcripcional/genética , Factores de Elongación Transcripcional/metabolismo , Ubiquitinación , Rayos Ultravioleta , Uracilo/análogos & derivados , Uracilo/metabolismo
20.
Proc Natl Acad Sci U S A ; 104(19): 8011-6, 2007 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-17470801

RESUMEN

Noncoding, or intergenic, transcription by RNA polymerase II (RNAPII) is remarkably widespread in eukaryotic organisms, but the effects of such transcription remain poorly understood. Here we show that noncoding transcription plays a role in activation, but not repression, of the Saccharomyces cerevisiae PHO5 gene. Histone eviction from the PHO5 promoter during activation occurs with normal kinetics even in the absence of the PHO5 TATA box, showing that transcription of the gene itself is not required for promoter remodeling. Nevertheless, we find that mutations that impair transcript elongation by RNAPII affect the kinetics of histone eviction from the PHO5 promoter. Most dramatically, inactivation of RNAPII itself abolishes eviction completely. Under repressing conditions, an approximately 2.4-kb noncoding exosome-degraded transcript is detected that originates near the PHO5 termination site and is transcribed in the antisense direction. Abrogation of this transcript delays chromatin remodeling and subsequent RNAPII recruitment to PHO5 upon activation. We propose that noncoding transcription through positioned nucleosomes can enhance chromatin plasticity so that chromatin remodeling and activation of traversed genes occur in a timely manner.


Asunto(s)
Regulación Fúngica de la Expresión Génica , Proteínas de Saccharomyces cerevisiae/genética , Transcripción Genética , Fosfatasa Ácida , Cinética , Sistemas de Lectura Abierta , Regiones Promotoras Genéticas , TATA Box
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...