Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 105
Filtrar
1.
Artículo en Alemán | MEDLINE | ID: mdl-38809160

RESUMEN

Ethical Considerations of Including Minors in Clinical Trials Using the Example of the Indicated Prevention of Psychotic Disorders Abstract: As a vulnerable group, minors require special protection in studies. For this reason, researchers are often reluctant to initiate studies, and ethics committees are reluctant to authorize such studies. This often excludes minors from participating in clinical studies. This exclusion can lead to researchers and clinicians receiving only incomplete data or having to rely on adult-based findings in the treatment of minors. Using the example of the study "Computer-Assisted Risk Evaluation in the Early Detection of Psychotic Disorders" (CARE), which was conducted as an 'other clinical investigation' according to the Medical Device Regulation, we present a line of argumentation for the inclusion of minors which weighs the ethical principles of nonmaleficence (especially regarding possible stigmatization), beneficence, autonomy, and fairness. We show the necessity of including minors based on the development-specific differences in diagnostics and early intervention. Further, we present specific protective measures. This argumentation can also be transferred to other disorders with the onset in childhood and adolescence and thus help to avoid excluding minors from appropriate evidence-based care because of insufficient studies.

2.
JMIR Ment Health ; 11: e57155, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38717799

RESUMEN

BACKGROUND: Digital approaches may be helpful in augmenting care to address unmet mental health needs, particularly for schizophrenia and severe mental illness (SMI). OBJECTIVE: An international multidisciplinary group was convened to reach a consensus on the challenges and potential solutions regarding collecting data, delivering treatment, and the ethical challenges in digital mental health approaches for schizophrenia and SMI. METHODS: The consensus development panel method was used, with an in-person meeting of 2 groups: the expert group and the panel. Membership was multidisciplinary including those with lived experience, with equal participation at all stages and coproduction of the consensus outputs and summary. Relevant literature was shared in advance of the meeting, and a systematic search of the recent literature on digital mental health interventions for schizophrenia and psychosis was completed to ensure that the panel was informed before the meeting with the expert group. RESULTS: Four broad areas of challenge and proposed solutions were identified: (1) user involvement for real coproduction; (2) new approaches to methodology in digital mental health, including agreed standards, data sharing, measuring harms, prevention strategies, and mechanistic research; (3) regulation and funding issues; and (4) implementation in real-world settings (including multidisciplinary collaboration, training, augmenting existing service provision, and social and population-focused approaches). Examples are provided with more detail on human-centered research design, lived experience perspectives, and biomedical ethics in digital mental health approaches for SMI. CONCLUSIONS: The group agreed by consensus on a number of recommendations: (1) a new and improved approach to digital mental health research (with agreed reporting standards, data sharing, and shared protocols), (2) equal emphasis on social and population research as well as biological and psychological approaches, (3) meaningful collaborations across varied disciplines that have previously not worked closely together, (4) increased focus on the business model and product with planning and new funding structures across the whole development pathway, (5) increased focus and reporting on ethical issues and potential harms, and (6) organizational changes to allow for true communication and coproduction with those with lived experience of SMI. This study approach, combining an international expert meeting with patient and public involvement and engagement throughout the process, consensus methodology, discussion, and publication, is a helpful way to identify directions for future research and clinical implementation in rapidly evolving areas and can be combined with measurements of real-world clinical impact over time. Similar initiatives will be helpful in other areas of digital mental health and similarly fast-evolving fields to focus research and organizational change and effect improved real-world clinical implementation.


Asunto(s)
Consenso , Esquizofrenia , Humanos , Esquizofrenia/terapia , Telemedicina/ética , Telemedicina/métodos , Servicios de Salud Mental/organización & administración , Trastornos Mentales/terapia
4.
J Neurosci ; 2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38670804

RESUMEN

The 40 Hz auditory steady-state response (ASSR), an oscillatory brain response to periodically modulated auditory stimuli, is a promising, non-invasive physiological biomarker for schizophrenia and related neuropsychiatric disorders. The 40 Hz ASSR might be amplified by synaptic interactions in cortical circuits, which are, in turn, disturbed in neuropsychiatric disorders. Here, we tested whether the 40 Hz ASSR in human auditory cortex depends on two key synaptic components of neuronal interactions within cortical circuits: excitation via N-methyl-aspartate glutamate (NMDA) receptors and inhibition via gamma-amino-butyric acid (GABA) receptors. We combined magnetoencephalography (MEG) recordings with placebo-controlled, low-dose pharmacological interventions in the same healthy human participants (13 males, 7 females). All participants exhibited a robust 40 Hz ASSR in auditory cortices, especially in the right hemisphere, under placebo. The GABAA receptor-agonist lorazepam increased the amplitude of the 40 Hz ASSR, while no effect was detectable under the NMDA-blocker memantine. Our findings indicate that the 40 Hz ASSR in auditory cortex involves synaptic (and likely intracortical) inhibition via the GABA-A receptor, thus highlighting its utility as a mechanistic signature of cortical circuit dysfunctions involving GABAergic inhibition.Significance statement The 40 Hz auditory steady-state response is a candidate non-invasive biomarker for schizophrenia and related neuropsychiatric disorders. Yet, the understanding of the synaptic basis of this neurophysiological signature in humans has remained incomplete. We combined magnetoencephalography (MEG) recordings with placebo-controlled pharmacological interventions in healthy human subjects to test the modulation of the 40 Hz ASSR in auditory cortex by two synaptic components that have been implicated in the generation of neuronal oscillations in cortical microcircuits: glutamate N-methyl-aspartate glutamate (NMDA) receptors and gamma-amino-butyric acid (GABA) -A receptors. Boosting GABAergic transmission, but not blocking NMDA-receptors, increased the amplitude of this ASSR. Thus, GABAergic inhibition modulates 40 Hz steady-state responses in auditory cortex.

5.
Front Psychiatry ; 15: 1352641, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38414495

RESUMEN

Introduction: We examined changes in large-scale functional connectivity and temporal dynamics and their underlying mechanisms in schizophrenia (ScZ) through measurements of resting-state functional magnetic resonance imaging (rs-fMRI) data and computational modelling. Methods: The rs-fMRI measurements from patients with chronic ScZ (n=38) and matched healthy controls (n=43), were obtained through the public schizConnect repository. Computational models were constructed based on diffusion-weighted MRI scans and fit to the experimental rs-fMRI data. Results: We found decreased large-scale functional connectivity across sensory and association areas and for all functional subnetworks for the ScZ group. Additionally global synchrony was reduced in patients while metastability was unaltered. Perturbations of the computational model revealed that decreased global coupling and increased background noise levels both explained the experimentally found deficits better than local changes to the GABAergic or glutamatergic system. Discussion: The current study suggests that large-scale alterations in ScZ are more likely the result of global rather than local network changes.

6.
Artículo en Inglés | MEDLINE | ID: mdl-37778724

RESUMEN

BACKGROUND: This study examined whether mismatch negativity (MMN) responses are impaired in participants at clinical high risk for psychosis (CHR-P) and patients with first-episode psychosis (FEP) and whether MMN deficits predict clinical outcomes in CHR-Ps. METHODS: Magnetoencephalography data were collected during a duration-deviant MMN paradigm for a group of 116 CHR-P participants, 33 FEP patients (15 antipsychotic-naïve), clinical high risk negative group (n = 38) with substance abuse and affective disorder, and 49 healthy control participants. Analysis of group differences of source-reconstructed event-related fields as well as time-frequency and intertrial phase coherence focused on the bilateral Heschl's gyri and bilateral superior temporal gyri. RESULTS: Significant magnetic MMN responses were found across participants in the bilateral Heschl's gyri and bilateral superior temporal gyri. However, MMN amplitude as well as time-frequency and intertrial phase coherence responses were intact in CHR-P participants and FEP patients compared with healthy control participants. Furthermore, MMN deficits were not related to persistent attenuated psychotic symptoms or transitions to psychosis in CHR-P participants. CONCLUSIONS: Our data suggest that magnetic MMN responses in magnetoencephalography data are not impaired in early-stage psychosis and may not predict clinical outcomes in CHR-P participants.


Asunto(s)
Antipsicóticos , Trastornos Psicóticos , Humanos , Electroencefalografía , Trastornos Psicóticos/diagnóstico , Trastornos del Humor , Magnetoencefalografía
7.
Schizophr Res ; 261: 60-71, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37708723

RESUMEN

BACKGROUND: Reduced auditory mismatch negativity (MMN) is robustly impaired in schizophrenia. However, mechanisms underlying dysfunctional MMN generation remain incompletely understood. This study aimed to examine the role of evoked spectral power and phase-coherence towards deviance detection and its impairments in schizophrenia. METHODS: Magnetoencephalography data was collected in 16 male schizophrenia patients and 16 male control participants during an auditory MMN paradigm. Analyses of event-related fields (ERF), spectral power and inter-trial phase-coherence (ITPC) focused on Heschl's gyrus, superior temporal gyrus, inferior/medial frontal gyrus and thalamus. RESULTS: MMNm ERF amplitudes were reduced in patients in temporal, frontal and subcortical regions, accompanied by decreased theta-band responses, as well as by a diminished gamma-band response in auditory cortex. At theta/alpha frequencies, ITPC to deviant tones was reduced in patients in frontal cortex and thalamus. Patients were also characterized by aberrant responses to standard tones as indexed by reduced theta-/alpha-band power and ITPC in temporal and frontal regions. Moreover, stimulus-specific adaptation was decreased at theta/alpha frequencies in left temporal regions, which correlated with reduced MMNm spectral power and ERF amplitude. Finally, phase-reset of alpha-oscillations after deviant tones in left thalamus was impaired, which correlated with impaired MMNm generation in auditory cortex. Importantly, both non-rhythmic and rhythmic components of spectral activity contributed to the MMNm response. CONCLUSIONS: Our data indicate that deficits in theta-/alpha- and gamma-band activity in cortical and subcortical regions as well as impaired spectral responses to standard sounds could constitute potential mechanisms for dysfunctional MMN generation in schizophrenia, providing a novel perspective towards MMN deficits in the disorder.


Asunto(s)
Magnetoencefalografía , Esquizofrenia , Humanos , Masculino , Estimulación Acústica , Electroencefalografía , Potenciales Evocados Auditivos/fisiología , Lóbulo Frontal , Lóbulo Temporal , Estudios de Casos y Controles
8.
Neuroimage ; 280: 120337, 2023 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-37604296

RESUMEN

Brain oscillations are produced by the coordinated activity of large groups of neurons and different rhythms are thought to reflect different modes of information processing. These modes, in turn, are known to occur at different spatial scales. Nevertheless, how these rhythms support different spatial modes of information processing at the brain scale is not yet fully understood. Here we use "Joint Time-Vertex Spectral Analysis" to characterize the joint spectral content of brain activity both in time (temporal frequencies) and in space over the connectivity graph (spatial connectome harmonics). This method allows us to characterize the relationship between spatially localized or distributed neural processes on one side and their respective temporal frequency bands in source-reconstructed M/EEG signals. We explore this approach on two different datasets, an auditory steady-state response (ASSR) and a visual grating task. Our results suggest that different information processing mechanisms are carried out at different frequency bands: while spatially distributed activity (which may also be interpreted as integration) specifically occurs at low temporal frequencies (alpha and theta) and low graph spatial frequencies, localized electrical activity (i.e., segregation) is observed at high temporal frequencies (high and low gamma) over restricted high spatial graph frequencies. Crucially, the estimated contribution of the distributed and localized neural activity predicts performance in a behavioral task, demonstrating the neurophysiological relevance of the joint time-vertex spectral representation.


Asunto(s)
Conectoma , Humanos , Cabeza , Cognición , Neuronas , Encéfalo
9.
Mol Psychiatry ; 28(8): 3171-3181, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37580524

RESUMEN

Most mental disorders have a typical onset between 12 and 25 years of age, highlighting the importance of this period for the pathogenesis, diagnosis, and treatment of mental ill-health. This perspective addresses interactions between risk and protective factors and brain development as key pillars accounting for the emergence of psychopathology in youth. Moreover, we propose that novel approaches towards early diagnosis and interventions are required that reflect the evolution of emerging psychopathology, the importance of novel service models, and knowledge exchange between science and practitioners. Taken together, we propose a transformative early intervention paradigm for research and clinical care that could significantly enhance mental health in young people and initiate a shift towards the prevention of severe mental disorders.


Asunto(s)
Trastornos Mentales , Salud Mental , Humanos , Adolescente , Trastornos Mentales/terapia , Trastornos Mentales/diagnóstico , Psicopatología
10.
Biol Psychiatry ; 94(7): 550-560, 2023 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-37086914

RESUMEN

There is converging evidence that 40-Hz auditory steady-state responses (ASSRs) are robustly impaired in schizophrenia and could constitute a potential biomarker for characterizing circuit dysfunctions as well as enable early detection and diagnosis. Here, we provide an overview of the mechanisms involved in 40-Hz ASSRs, drawing on computational, physiological, and pharmacological data with a focus on parameters modulating the balance between excitation and inhibition. We will then summarize findings from electro- and magnetoencephalographic studies in participants at clinical high risk for psychosis, patients with first-episode psychosis, and patients with schizophrenia to identify the pattern of deficits across illness stages, the relationship with clinical variables, and the prognostic potential. Finally, data on genetics and developmental modifications will be reviewed, highlighting the importance of late modifications of 40-Hz ASSRs during adolescence, which are closely related to the underlying changes in GABA (gamma-aminobutyric acid) interneurons. Together, our review suggests that 40-Hz ASSRs may constitute an informative electrophysiological approach to characterize circuit dysfunctions in psychosis that could be relevant for the development of mechanistic biomarkers.


Asunto(s)
Trastornos Psicóticos , Esquizofrenia , Adolescente , Humanos , Esquizofrenia/diagnóstico , Estimulación Acústica , Potenciales Evocados Auditivos/fisiología , Trastornos Psicóticos/diagnóstico , Electroencefalografía , Biomarcadores
11.
Schizophrenia (Heidelb) ; 9(1): 25, 2023 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-37117187

RESUMEN

Evidence suggests that schizophrenia (ScZ) involves impairments in sensory attenuation. It is currently unclear, however, whether such deficits are present during early-stage psychosis as well as the underlying network and the potential as a biomarker. To address these questions, Magnetoencephalography (MEG) was used in combination with computational modeling to examine M100 responses that involved a "passive" condition during which tones were binaurally presented, while in an "active" condition participants were asked to generate a tone via a button press. MEG data were obtained from 109 clinical high-risk for psychosis (CHR-P) participants, 23 people with a first-episode psychosis (FEP), and 48 healthy controls (HC). M100 responses at sensor and source level in the left and right thalamus (THA), Heschl's gyrus (HES), superior temporal gyrus (STG) and right inferior parietal cortex (IPL) were examined and dynamic causal modeling (DCM) was performed. Furthermore, the relationship between sensory attenuation and persistence of attenuated psychotic symptoms (APS) and transition to psychosis was investigated in CHR-P participants. Sensory attenuation was impaired in left HES, left STG and left THA in FEP patients, while in the CHR-P group deficits were observed only in right HES. DCM results revealed that CHR-P participants showed reduced top-down modulation from the right IPL to the right HES. Importantly, deficits in sensory attenuation did not predict clinical outcomes in the CHR-P group. Our results show that early-stage psychosis involves impaired sensory attenuation in auditory and thalamic regions but may not predict clinical outcomes in CHR-P participants.

12.
Schizophr Res ; 254: 54-61, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36801514

RESUMEN

Emerging evidence suggests that the duration of risk symptoms (DUR) may have an impact on clinical outcomes in clinical high-risk for psychosis (CHRP) participants. To explore this hypothesis, we performed a meta-analysis on studies that examined DUR in CHR-P individuals in relation to their clinical outcomes. This review was conducted in accordance with the PRISMA guidelines and the protocol was registered with PROSPERO on 16th April 2021 (ID no. CRD42021249443). Literature searches were conducted using PsycINFO and Web of Science in March and November 2021, for studies reporting on DUR in CHR-P populations, in relation to transition to psychosis or symptomatic, functional, or cognitive outcomes. The primary outcome was transition to psychosis, while the secondary outcomes were remission from CHR-P status and functioning at baseline. Thirteen independent studies relating to 2506 CHR-P individuals were included in the meta-analysis. The mean age was 19.88 years (SD = 1.61) and 1194 individuals (47.65 %) were females. The mean length of DUR was 23.61 months (SD = 13.18). There was no meta-analytic effect of DUR on transition to psychosis at 12-month follow-up (OR = 1.000, 95%CI = 0.999-1.000, k = 8, p = .98), while DUR was related to remission (Hedge's g = 0.236, 95%CI = 0.014-0.458, k = 4, p = .037). DUR was not related to baseline GAF scores (beta = -0.004, 95%CI = -0.025-0.017, k = 3, p = .71). The current findings suggest that DUR is not associated with transition to psychosis at 12 months, but may impact remission. However, the database was small and further research in this area is required.


Asunto(s)
Trastornos Psicóticos , Femenino , Humanos , Masculino , Adulto Joven , Bases de Datos Factuales , Trastornos Psicóticos/psicología , Adolescente
13.
Early Interv Psychiatry ; 17(3): 327-330, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36205386

RESUMEN

AIM: Language disturbances are a candidate biomarker for the early detection of psychosis. Temporal and prosodic abnormalities have been observed in schizophrenia patients, while there is conflicting evidence whether such deficits are present in participants meeting clinical high-risk for psychosis (CHR-P) criteria. METHODS: Clinical interviews from CHR-P participants (n = 50) were examined for temporal and prosodic metrics and compared against a group of healthy controls (n = 17) and participants with affective disorders and substance abuse (n = 23). RESULTS: There were no deficits in acoustic variables in the CHR-P group, while participants with affective disorders/substance abuse were characterized by slower speech rate, longer pauses and higher unvoiced frames percentage. CONCLUSION: Our finding suggests that temporal and prosodic aspects of speech are not impaired in early-stage psychosis. Further studies are required to clarify whether such abnormalities are present in sub-groups of CHR-P participants with elevated psychosis-risk.


Asunto(s)
Trastornos Psicóticos , Esquizofrenia , Humanos , Trastornos Psicóticos/diagnóstico , Trastornos Psicóticos/psicología , Esquizofrenia/diagnóstico , Trastornos del Humor , Acústica , Diagnóstico Precoz
14.
NPJ Digit Med ; 5(1): 144, 2022 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-36109583

RESUMEN

Cognitive behavioral therapy (CBT) represents one of the major treatment options for depressive disorders besides pharmacological interventions. While newly developed digital CBT approaches hold important advantages due to higher accessibility, their relative effectiveness compared to traditional CBT remains unclear. We conducted a systematic literature search to identify all studies that conducted a CBT-based intervention (face-to-face or digital) in patients with major depression. Random-effects meta-analytic models of the standardized mean change using raw score standardization (SMCR) were computed. In 106 studies including n = 11854 patients face-to-face CBT shows superior clinical effectiveness compared to digital CBT when investigating depressive symptoms (p < 0.001, face-to-face CBT: SMCR = 1.97, 95%-CI: 1.74-2.13, digital CBT: SMCR = 1.20, 95%-CI: 1.08-1.32) and adherence (p = 0.014, face-to-face CBT: 82.4%, digital CBT: 72.9%). However, after accounting for differences between face-to-face and digital CBT studies, both approaches indicate similar effectiveness. Important variables with significant moderation effects include duration of the intervention, baseline severity, adherence and the level of human guidance in digital CBT interventions. After accounting for potential confounders our analysis indicates comparable effectiveness of face-to-face and digital CBT approaches. These findings underline the importance of moderators of clinical effects and provide a basis for the future personalization of CBT treatment in depression.

15.
Neuroimage Clin ; 35: 103087, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35780662

RESUMEN

Hippocampal dysfunctions are a core feature of schizophrenia, but conflicting evidence exists whether volumetric and morphological changes are present in early-stage psychosis and to what extent these deficits are related to clinical trajectories. In this study, we recruited individuals at clinical high risk for psychosis (CHR-P) (n = 108), patients with a first episode of psychosis (FEP) (n = 37), healthy controls (HC) (n = 70) as well as a psychiatric control group with substance abuse and affective disorders (CHR-N: n = 38). MRI-data at baseline were obtained and volumetric as well as vertex analyses of the hippocampus were carried out. Moreover, volumetric changes were examined in the amygdala, caudate, nucleus accumbens, pallidum, putamen and thalamus. In addition, we obtained follow-up functional and symptomatic assessments in CHR-P individuals to examine the question whether anatomical deficits at baseline predicted clinical trajectories. Our results show that the hippocampus is the only structure showing significant volumetric decrease in early-stage psychosis, with FEPs showing significantly smaller hippocampal volumes bilaterally alongside widespread shape changes in the vertex analysis. For the CHR-P group, volumetric decreases were confined to the left hippocampus. However, hippocampal alterations in the CHR-P group were not robustly associated with clinical outcomes, including the persistence of attenuated psychotic symptoms and functional trajectories. Accordingly, our findings highlight that dysfunctions in hippocampal anatomy are an important feature of early-stage psychosis which may, however, not be related to clinical outcomes in CHR-P participants.


Asunto(s)
Trastornos Psicóticos , Esquizofrenia , Amígdala del Cerebelo , Hipocampo , Humanos , Imagen por Resonancia Magnética , Esquizofrenia/diagnóstico por imagen
16.
Biol Psychiatry ; 92(5): 407-418, 2022 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-35550793

RESUMEN

BACKGROUND: Numerous behavioral studies have highlighted the contribution of visual perceptual deficits to the nonverbal cognitive profile of individuals with 22q11.2 deletion syndrome. However, the neurobiological processes underlying these widespread behavioral alterations are yet to be fully understood. Thus, in this paper, we investigated the role of neural oscillations toward visuoperceptual deficits to elucidate the neurobiology of sensory impairments in deletion carriers. METHODS: We acquired 125 high-density electroencephalography recordings during a visual grating task in a group of 62 deletion carriers and 63 control subjects. Stimulus-elicited oscillatory responses were analyzed with 1) time-frequency analysis using wavelets decomposition at sensor and source level, 2) intertrial phase coherence, and 3) Granger causality connectivity in source space. Additional analyses examined the development of neural oscillations across age bins. RESULTS: Deletion carriers had decreased theta-band (4-8 Hz) and gamma-band (58-68 Hz) spectral power compared with control subjects in response to the visual stimuli, with an absence of age-related increase of theta- and gamma-band responses. Moreover, adult deletion carriers had decreased gamma- and theta-band responses but increased alpha/beta desynchronization (10-25 Hz) that correlated with behavioral performance. Granger causality estimates reflected an increased frontal-occipital connectivity in the beta range (22-40 Hz). CONCLUSIONS: Deletion carriers exhibited decreased theta- and gamma-band responses to visual stimuli, while alpha/beta desynchronization was preserved. Overall, the lack of age-related changes in deletion carriers implicates developmental impairments in circuit mechanisms underlying neural oscillations. The dissociation between the maturation of theta/gamma- and alpha/beta-band responses may indicate a selective impairment in supragranular cortical layers, leading to compensatory top-down connectivity.


Asunto(s)
Síndrome de DiGeorge , Ritmo Gamma , Adulto , Electroencefalografía , Ritmo Gamma/fisiología , Humanos , Percepción Visual/fisiología
17.
Front Psychiatry ; 13: 859322, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35422722

RESUMEN

Psychosis involves changes in GABAergic and glutamatergic neurotransmission in auditory cortex that could be important for understanding sensory deficits and symptoms of psychosis. However, it is currently unclear whether such deficits are present in participants at clinical high-risk for psychosis (CHR-P) and whether they are associated with clinical outcomes. Magnetic Resonance Spectroscopy (MEGAPRESS, 1H-MRS at 3 Tesla) was used to estimate GABA, glutamate, and glutamate-plus-glutamine (Glx) levels in auditory cortex in a large sample of CHR-P (n = 99), CHR-N (clinical high-risk negative, n = 32), and 45 healthy controls. Examined were group differences in metabolite concentrations as well as relationships with clinical symptoms, general cognition, and 1-year follow-up clinical and general functioning in the CHR-P group. Results showed a marginal (p = 0.039) main group effect only for Glx, but not for GABA and glutamate concentrations, and only in left, not right, auditory cortex. This effect did not survive multiple comparison correction, however. Exploratory post-hoc tests revealed that there were significantly lower Glx levels (p = 0.029, uncorrected) in the CHR-P compared to the CHR-N group, but not relative to healthy controls (p = 0.058, uncorrected). Glx levels correlated with the severity of perceptual abnormalities and disorganized speech scores. However, in the CHR-P group, Glx levels did not predict clinical or functional outcomes. Accordingly, the findings from the present study suggest that MRS-measured GABA, glutamate and Glx levels in auditory cortex of CHR-P individuals are largely intact.

19.
Am J Psychiatry ; 179(3): 204-215, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35236117

RESUMEN

OBJECTIVE: Brain oscillations play a pivotal role in synchronizing responses of local and global ensembles of neurons. Patients with schizophrenia exhibit impairments in oscillatory response, which are thought to stem from abnormal maturation during critical developmental stages. Studying individuals at genetic risk for psychosis, such as 22q11.2 deletion carriers, from childhood to adulthood may provide insights into developmental abnormalities. METHODS: The authors acquired 106 consecutive T1-weighted MR images and 40-Hz auditory steady-state responses (ASSRs) with high-density (256 channel) EEG in a group of 58 22q11.2 deletion carriers and 48 healthy control subjects. ASSRs were analyzed with 1) time-frequency analysis using Morlet wavelet decomposition, 2) intertrial phase coherence (ITPC), and 3) theta-gamma phase-amplitude coupling estimated in the source space between brain regions activated by the ASSRs. Additionally, volumetric analyses were performed with FreeSurfer. Subanalyses were conducted in deletion carriers who endorsed psychotic symptoms and in subgroups with different age bins. RESULTS: Deletion carriers had decreased theta and late-latency 40-Hz ASSRs and phase synchronization compared with control subjects. Deletion carriers with psychotic symptoms displayed a further reduction of gamma-band response, decreased ITPC, and decreased top-down modulation of gamma-band response in the auditory cortex. Reduced gamma-band response was correlated with the atrophy of auditory cortex in individuals with psychotic symptoms. In addition, a linear increase of theta and gamma power from childhood to adulthood was found in control subjects but not in deletion carriers. CONCLUSIONS: The results suggest that while all deletion carriers exhibit decreased gamma-band response, more severe local and long-range communication abnormalities are associated with the emergence of psychotic symptoms and gray matter loss. Additionally, the lack of age-related changes in deletion carriers indexes a potential developmental impairment in circuits underlying the maturation of neural oscillations during adolescence. The progressive disruption of gamma-band response in 22q11.2 deletion syndrome supports a developmental perspective toward understanding and treating psychotic disorders.


Asunto(s)
Corteza Auditiva , Síndrome de DiGeorge , Trastornos Psicóticos , Esquizofrenia , Adolescente , Niño , Electroencefalografía , Humanos , Trastornos Psicóticos/genética , Esquizofrenia/diagnóstico , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA