Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
ChemMedChem ; : e202400292, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38887198

RESUMEN

New strategies for the rapid development of broad-spectrum antiviral therapies are urgently required for emerging and re-emerging viruses like the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Host-directed antivirals that target universal cellular metabolic pathways necessary for viral replication present a promising approach with broad-spectrum activity and low potential for development of viral resistance. Dihydroorotate dehydrogenase (DHODH) was identified as one of those universal host factors essential for the replication of many clinically relevant human pathogenic viruses. DHODH is the rate-limiting enzyme catalyzing the fourth step in the de novo pyrimidine synthesis. Therefore, it is also developed as a therapeutic target for many diseases relying on cellular pyrimidine resources, such as cancer, autoimmune diseases and viral or bacterial infection. Thus, several DHODH inhibitors, including vidofludimus calcium (VidoCa, IMU-838), are currently in development or have been investigated in clinical trials for the treatment of virus infections such as SARS-CoV-2-mediated coronavirus disease 19 (COVID-19). Here, we report the medicinal chemistry optimization of VidoCa that resulted in metabolically more stable derivatives with improved DHODH target inhibition in various mammalian species, which translated into improved efficacy against SARS-CoV-2.

2.
Mol Ther Oncol ; 32(1): 200784, 2024 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-38596296

RESUMEN

Viruses are able to efficiently penetrate cells, multiply, and eventually kill infected cells, release tumor antigens, and activate the immune system. Therefore, viruses are highly attractive novel agents for cancer therapy. Clinical trials with first generations of oncolytic viruses (OVs) are very promising but show significant need for optimization. The aim of TheraVision was to establish a broadly applicable engineering platform technology for combinatorial oncolytic virus and immunotherapy. Through genetic engineering, an attenuated herpes simplex virus type 1 (HSV1) was generated that showed increased safety compared to the wild-type strain. To demonstrate the modularity and the facilitated generation of new OVs, two transgenes encoding retargeting as well as immunomodulating single-chain variable fragments (scFvs) were integrated into the platform vector. The resulting virus selectively infected epidermal growth factor receptor (EGFR)-expressing cells and produced a functional immune checkpoint inhibitor against programmed cell death protein 1 (PD-1). Thus, both viral-mediated oncolysis and immune-cell-mediated therapy were combined into a single viral vector. Safety and functionality of the armed OVs have been shown in novel preclinical models ranging from patient-derived organoids and tissue-engineered human in vitro 3D tumor models to complex humanized mouse models. Consequently, a novel and proprietary engineering platform vector based on HSV1 is available for the facilitated preclinical development of oncolytic virotherapy.

3.
J Control Release ; 364: 654-671, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37939853

RESUMEN

Despite tremendous global efforts since the beginning of the COVID-19 pandemic, still only a limited number of prophylactic and therapeutic options are available. Although vaccination is the most effective measure in preventing morbidity and mortality, there is a need for safe and effective post-infection treatment medication. In this study, we explored a pipeline of 21 potential candidates, examined in the Calu-3 cell line for their antiviral efficacy, for drug repurposing. Ralimetinib and nafamostat, clinically used drugs, have emerged as attractive candidates. Due to the inherent limitations of the selected drugs, we formulated targeted liposomes suitable for both systemic and intranasal administration. Non-targeted and targeted nafamostat liposomes (LipNaf) decorated with an Apolipoprotein B peptide (ApoB-P) as a specific lung-targeting ligand were successfully developed. The developed liposomal formulations of nafamostat were found to possess favorable physicochemical properties including nano size (119-147 nm), long-term stability of the normally rapidly degrading compound in aqueous solution, negligible leakage from the liposomes upon storage, and a neutral surface charge with low polydispersity index (PDI). Both nafamostat and ralimetinib liposomes showed good cellular uptake and lack of cytotoxicity, and non-targeted LipNaf demonstrated enhanced accumulation in the lungs following intranasal (IN) administration in non-infected mice. LipNaf retained its anti-SARS-CoV 2 activity in Calu 3 cells with only a modest decrease, exhibiting complete inhibition at concentrations >100 nM. IN, but not intraperitoneal (IP) treatment with targeted LipNaf resulted in a trend to reduced viral load in the lungs of K18-hACE2 mice compared to targeted empty Lip. Nevertheless, upon removal of outlier data, a statistically significant 1.9-fold reduction in viral load was achieved. This observation further highlights the importance of a targeted delivery into the respiratory tract. In summary, we were able to demonstrate a proof-of-concept of drug repurposing by liposomal formulations with anti-SARS-CoV-2 activity. The biodistribution and bioactivity studies with LipNaf suggest an IN or inhalation route of administration for optimal therapeutic efficacy.


Asunto(s)
COVID-19 , Humanos , Ratones , Animales , Liposomas , Reposicionamiento de Medicamentos , Pandemias , Distribución Tisular , Pulmón , SARS-CoV-2
4.
JACS Au ; 2(9): 2187-2202, 2022 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-36186568

RESUMEN

The COVID-19 pandemic caused by SARS-CoV-2 presents a global health emergency. Therapeutic options against SARS-CoV-2 are still very limited but urgently required. Molecular tweezers are supramolecular agents that destabilize the envelope of viruses resulting in a loss of viral infectivity. Here, we show that first-generation tweezers, CLR01 and CLR05, disrupt the SARS-CoV-2 envelope and abrogate viral infectivity. To increase the antiviral activity, a series of 34 advanced molecular tweezers were synthesized by insertion of aliphatic or aromatic ester groups on the phosphate moieties of the parent molecule CLR01. A structure-activity relationship study enabled the identification of tweezers with a markedly enhanced ability to destroy lipid bilayers and to suppress SARS-CoV-2 infection. Selected tweezer derivatives retain activity in airway mucus and inactivate the SARS-CoV-2 wildtype and variants of concern as well as respiratory syncytial, influenza, and measles viruses. Moreover, inhibitory activity of advanced tweezers against respiratory syncytial virus and SARS-CoV-2 was confirmed in mice. Thus, potentiated tweezers are broad-spectrum antiviral agents with great prospects for clinical development to combat highly pathogenic viruses.

5.
Adv Sci (Weinh) ; 9(20): e2201378, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35543527

RESUMEN

Inhibitors of viral cell entry based on poly(styrene sulfonate) and its core-shell nanoformulations based on gold nanoparticles are investigated against a panel of viruses, including clinical isolates of SARS-CoV-2. Macromolecular inhibitors are shown to exhibit the highly sought-after broad-spectrum antiviral activity, which covers most analyzed enveloped viruses and all of the variants of concern for SARS-CoV-2 tested. The inhibitory activity is quantified in vitro in appropriate cell culture models and for respiratory viral pathogens (respiratory syncytial virus and SARS-CoV-2) in mice. Results of this study comprise a significant step along the translational path of macromolecular inhibitors of virus cell entry, specifically against enveloped respiratory viruses.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , Nanopartículas del Metal , Animales , Antivirales/farmacología , Antivirales/uso terapéutico , Oro , Ratones , SARS-CoV-2 , Internalización del Virus
6.
iScience ; 25(5): 104293, 2022 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-35492218

RESUMEN

The nucleoside analog N4-hydroxycytidine (NHC) is the active metabolite of the prodrug molnupiravir, which has been approved for the treatment of COVID-19. SARS-CoV-2 incorporates NHC into its RNA, resulting in defective virus genomes. Likewise, inhibitors of dihydroorotate dehydrogenase (DHODH) reduce virus yield upon infection, by suppressing the cellular synthesis of pyrimidines. Here, we show that NHC and DHODH inhibitors strongly synergize in the inhibition of SARS-CoV-2 replication in vitro. We propose that the lack of available pyrimidine nucleotides upon DHODH inhibition increases the incorporation of NHC into nascent viral RNA. This concept is supported by the rescue of virus replication upon addition of pyrimidine nucleosides to the media. DHODH inhibitors increased the antiviral efficiency of molnupiravir not only in organoids of human lung, but also in Syrian Gold hamsters and in K18-hACE2 mice. Combining molnupiravir with DHODH inhibitors may thus improve available therapy options for COVID-19.

7.
Eur J Immunol ; 52(5): 770-783, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-34355795

RESUMEN

TRIANNI mice carry an entire set of human immunoglobulin V region gene segments and are a powerful tool to rapidly isolate human monoclonal antibodies. After immunizing these mice with DNA encoding the spike protein of SARS-CoV-2 and boosting with spike protein, we identified 29 hybridoma antibodies that reacted with the SARS-CoV-2 spike protein. Nine antibodies neutralize SARS-CoV-2 infection at IC50 values in the subnanomolar range. ELISA-binding studies and DNA sequence analyses revealed one cluster of three clonally related neutralizing antibodies that target the receptor-binding domain and compete with the cellular receptor hACE2. A second cluster of six clonally related neutralizing antibodies bind to the N-terminal domain of the spike protein without competing with the binding of hACE2 or cluster 1 antibodies. SARS-CoV-2 mutants selected for resistance to an antibody from one cluster are still neutralized by an antibody from the other cluster. Antibodies from both clusters markedly reduced viral spread in mice transgenic for human ACE2 and protected the animals from SARS-CoV-2-induced weight loss. The two clusters of potent noncompeting SARS-CoV-2 neutralizing antibodies provide potential candidates for therapy and prophylaxis of COVID-19. The study further supports transgenic animals with a human immunoglobulin gene repertoire as a powerful platform in pandemic preparedness initiatives.


Asunto(s)
COVID-19 , Glicoproteína de la Espiga del Coronavirus , Animales , Anticuerpos Monoclonales , Anticuerpos Neutralizantes , Anticuerpos Antivirales , Humanos , Ratones , SARS-CoV-2
8.
Nat Commun ; 12(1): 6871, 2021 11 26.
Artículo en Inglés | MEDLINE | ID: mdl-34836955

RESUMEN

Several effective SARS-CoV-2 vaccines are currently in use, but effective boosters are needed to maintain or increase immunity due to waning responses and the emergence of novel variants. Here we report that intranasal vaccinations with adenovirus 5 and 19a vectored vaccines following a systemic plasmid DNA or mRNA priming result in systemic and mucosal immunity in mice. In contrast to two intramuscular applications of an mRNA vaccine, intranasal boosts with adenoviral vectors induce high levels of mucosal IgA and lung-resident memory T cells (TRM); mucosal neutralization of virus variants of concern is also enhanced. The mRNA prime provokes a comprehensive T cell response consisting of circulating and lung TRM after the boost, while the plasmid DNA prime induces mostly mucosal T cells. Concomitantly, the intranasal boost strategies lead to complete protection against a SARS-CoV-2 infection in mice. Our data thus suggest that mucosal booster immunizations after mRNA priming is a promising approach to establish mucosal immunity in addition to systemic responses.


Asunto(s)
Vacunas contra la COVID-19/inmunología , COVID-19/prevención & control , Inmunidad Mucosa , Inmunización Secundaria/métodos , SARS-CoV-2/inmunología , Adenoviridae/genética , Administración Intranasal , Animales , Anticuerpos Antivirales/inmunología , Vacunas contra la COVID-19/administración & dosificación , Vacunas contra la COVID-19/genética , Vectores Genéticos , Esquemas de Inmunización , Inmunogenicidad Vacunal , Células T de Memoria/inmunología , Ratones , Vacunas de ADN/administración & dosificación , Vacunas de ADN/genética , Vacunas de ADN/inmunología , Vacunas de ARNm/administración & dosificación , Vacunas de ARNm/inmunología
9.
Antiviral Res ; 195: 105190, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34666109

RESUMEN

Although the seroprevalence of Herpes simplex virus type 1 (HSV-1) currently amounts to âˆ¼ 67% worldwide, the annual incidence of a severe disease progression, particularly herpes encephalitis, is approximately 2-4 cases per 1,000,000 infections. Nucleoside analogues, such as acyclovir (ACV), valacyclovir (VACV) or famciclovir, are still the therapeutic treatment of choice for HSV infections. However, nucleoside drugs have limited efficacy against severe HSV disease and for treatment of nucleoside-resistant viral strains, alternative therapies such as helicase-primase inhibitors (HPIs) which are highly potent by inhibiting viral replication are under development. In preclinical studies we analyzed the antiviral efficacy of drug candidates of a novel compound class of HPIs for the treatment of HSV to identify the most active eutomer structure in an intranasal infection mouse lethal challenge model. HSV-1 infected BALB/c mice treated with vehicle control developed fatal disease according to humane endpoints after 5-7 days. In contrast, the animals dosed orally once daily with the HPI compounds at 10 or 4 mg/kg/day showed a significantly increased survival (70% and 100% for 10 mg/kg/day; 90% and 100% for 4 mg/kg/day, respectively) compared to the vehicle treatment (0-10%), when therapy was initiated 6 h post HSV-1 inoculation. We observed a significantly improved outcome in clinical parameters and survival over 21 days in the group receiving novel HPI candidates using even the lowest dose of 4 mg/kg/day. With VACV treatment of 75 mg/kg daily survival was also significantly increased (80%-90% for 75 mg/kg/day) but to lesser extent. Initial IM-250 therapy at 10 mg/kg/day could be delayed up to 72 h resulting in significantly increased survival compared to the vehicle control. Furthermore, we detected significantly fewer viral genome copies in the lungs and brains of HPI treated animals compared to vehicle (440-fold reduction for 4 mg/kg/day IM-250 in the brain) or VACV controls by quantitative PCR. In conclusion the preclinical studies of the novel HPI compounds showed superior efficacy in comparison to the current standard HSV treatment represented by VACV with respect to the survival according humane endpoints, the clinical score and virus load in lungs and brains. Thus, candidates of this new drug class are promising antivirals of HSV infections and further translation into clinical trials is warranted.


Asunto(s)
Antivirales/farmacología , ADN Helicasas/antagonistas & inhibidores , ADN Primasa/antagonistas & inhibidores , Herpes Simple/virología , Herpesvirus Humano 1/efectos de los fármacos , Aciclovir/farmacología , Animales , Chlorocebus aethiops , Modelos Animales de Enfermedad , Femenino , Herpes Simple/tratamiento farmacológico , Ratones , Ratones Endogámicos BALB C , Tasa de Supervivencia , Valaciclovir/farmacología , Células Vero , Carga Viral/efectos de los fármacos
10.
Sci Transl Med ; 13(598)2021 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-34135112

RESUMEN

More than 50% of the world population is chronically infected with herpesviruses. Herpes simplex virus (HSV) infections are the cause of herpes labialis (cold sores), genital herpes, and sight-impairing keratitis. Less frequently, life-threatening disseminated disease (encephalitis and generalized viremia) can also occur, mainly in immunocompromised patients and newborns. After primary infection, HSV persists for life in a latent state in trigeminal or sacral ganglia and, triggered by diverse stimuli, disease recurs in more than 30% of patients up to several times a year. Current therapy with nucleoside analogs targeting the viral polymerase is somewhat effective but limited by poor exposure in the nervous system, and latent infections are not affected by therapy. Here, we report on an inhibitor of HSV helicase-primase with potent in vitro anti-herpes activity, a different mechanism of action, a low frequency of HSV resistance, and a favorable pharmacokinetic and safety profile. Improved target tissue exposure results in superior efficacy in preventing and treating HSV infection and disease in animal models as compared to standard of care. Therapy of primary HSV infections with drug candidate IM-250 {(S)-2-(2',5'-difluoro-[1,1'-biphenyl]-4-yl)-N-methyl-N-(4-methyl-5-(S-methylsulfon-imidoyl)thiazol-2-yl)acetamide} not only reduces the duration of disease symptoms or time to healing but also prevents recurrent disease in guinea pigs. Treatment of recurrent infections reduces the frequency of recurrences and viral shedding, and, unlike nucleosidic drugs, IM-250 remains effective for a time after cessation of treatment. Hence, IM-250 has advantages over standard-of-care therapies and represents a promising therapeutic for chronic HSV infection, including nucleoside-resistant HSV.


Asunto(s)
Antivirales , Herpes Simple , Latencia del Virus/efectos de los fármacos , Animales , Antivirales/farmacología , Antivirales/uso terapéutico , ADN Primasa , Cobayas , Herpes Simple/tratamiento farmacológico , Herpesvirus Humano 2 , Humanos , Sistema Nervioso
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...