Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
2.
Elife ; 92020 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-32180547

RESUMEN

Wikidata is a community-maintained knowledge base that has been assembled from repositories in the fields of genomics, proteomics, genetic variants, pathways, chemical compounds, and diseases, and that adheres to the FAIR principles of findability, accessibility, interoperability and reusability. Here we describe the breadth and depth of the biomedical knowledge contained within Wikidata, and discuss the open-source tools we have built to add information to Wikidata and to synchronize it with source databases. We also demonstrate several use cases for Wikidata, including the crowdsourced curation of biomedical ontologies, phenotype-based diagnosis of disease, and drug repurposing.


Asunto(s)
Disciplinas de las Ciencias Biológicas , Biología Computacional , Bases de Datos Factuales , Genómica , Proteómica , Humanos , Reconocimiento de Normas Patrones Automatizadas
3.
Food Chem ; 302: 125290, 2020 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-31404873

RESUMEN

In our daily lives, we consume foods that have been transported, stored, prepared, cooked, or otherwise processed by ourselves or others. Food storage and preparation have drastic effects on the chemical composition of foods. Untargeted mass spectrometry analysis of food samples has the potential to increase our chemical understanding of these processes by detecting a broad spectrum of chemicals. We performed a time-based analysis of the chemical changes in foods during common preparations, such as fermentation, brewing, and ripening, using untargeted mass spectrometry and molecular networking. The data analysis workflow presented implements an approach to study changes in food chemistry that can reveal global alterations in chemical profiles, identify changes in abundance, as well as identify specific chemicals and their transformation products. The data generated in this study are publicly available, enabling the replication and re-analysis of these data in isolation, and serve as a baseline dataset for future investigations.


Asunto(s)
Bebidas/análisis , Análisis de los Alimentos , Manipulación de Alimentos , Espectrometría de Masas , Metabolómica , Fermentación , Flujo de Trabajo
4.
PLoS One ; 14(2): e0212355, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30763377

RESUMEN

Microbial communities control numerous biogeochemical processes critical for ecosystem function and health. Most analyses of coastal microbial communities focus on the characterization of bacteria present in either sediment or seawater, with fewer studies characterizing both sediment and seawater together at a given site, and even fewer studies including information about non-bacterial microbial communities. As a result, knowledge about the ecological patterns of microbial biodiversity across domains and habitats in coastal communities is limited-despite the fact that archaea, bacteria, and microbial eukaryotes are present and known to interact in coastal habitats. To better understand microbial biodiversity patterns in coastal ecosystems, we characterized sediment and seawater microbial communities for three sites along the coastline of Puerto Nuevo, Baja California, Mexico using both 16S and 18S rRNA gene amplicon sequencing. We found that sediment hosted approximately 500-fold more operational taxonomic units (OTUs) for bacteria, archaea, and microbial eukaryotes than seawater (p < 0.001). Distinct phyla were found in sediment versus seawater samples. Of the top ten most abundant classes, Cytophagia (bacterial) and Chromadorea (eukaryal) were specific to the sediment environment, whereas Cyanobacteria and Bacteroidia (bacterial) and Chlorophyceae (eukaryal) were specific to the seawater environment. A total of 47 unique genera were observed to comprise the core taxa community across environment types and sites. No archaeal taxa were observed as part of either the abundant or core taxa. No significant differences were observed for sediment community composition across domains or between sites. For seawater, the bacterial and archaeal community composition was statistically different for the Major Outlet site (p < 0.05), the site closest to a residential area, and the eukaryal community composition was statistically different between all sites (p < 0.05). Our findings highlight the distinct patterns and spatial heterogeneity in microbial communities of a coastal region in Baja California, Mexico.


Asunto(s)
Archaea/aislamiento & purificación , Bacterias/aislamiento & purificación , Eucariontes/aislamiento & purificación , Sedimentos Geológicos/microbiología , Agua de Mar/microbiología , Archaea/genética , Bacterias/genética , Eucariontes/genética , México , Microbiota , ARN Ribosómico 16S/química , ARN Ribosómico 16S/metabolismo , ARN Ribosómico 18S/química , ARN Ribosómico 18S/metabolismo , Análisis de Secuencia de ADN
5.
Toxicon X ; 4: 100016, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32550573

RESUMEN

Venom is a known source of novel antimicrobial natural products. The substantial, increasing number of these discoveries have unintentionally culminated in the misconception that venom and venom-producing glands are largely sterile environments. Culture-dependent and -independent studies on the microbial communities in venom microenvironments reveal the presence of archaea, algae, bacteria, fungi, protozoa, and viruses. Venom-centric microbiome studies are relatively sparse to date with the adaptive advantages that venom-associated microbes might offer to their hosts, or that hosts might provide to venom-associated microbes, remaining largely unknown. We highlight the potential for the discovery of venom microbiomes within the adaptive landscape of venom systems. The considerable number of convergently evolved venomous animals, juxtaposed with the comparatively few known studies to identify microbial communities in venom, provides new possibilities for both biodiversity and therapeutic discoveries. We present an evidence-based argument for integrating microbiology as part of venomics (i.e., venom-microbiomics) and introduce iVAMP, the Initiative for Venom Associated Microbes and Parasites (https://ivamp-consortium.github.io/), as a growing collaborative consortium. We express commitment to the diversity, inclusion and scientific collaboration among researchers interested in this emerging subdiscipline through expansion of the iVAMP consortium.

6.
Integr Comp Biol ; 58(6): 1294-1303, 2018 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-29992244

RESUMEN

The Biota Project communicates science to populations historically ignored by the scientific community. The Biota Project is comprised of a team of young professionals from a myriad of backgrounds and locations with interests in promoting science accessibility and equity. We do this by highlighting research conducted by scientists from underrepresented groups in relatable yet underrated locations with the intention of increasing the participation of underrepresented populations in science. The Biota Project centers on the scientific definition of symbiosis as a tool for both educating and learning from its followers. We deliver stories on the environments of our own backyards by merging art and science and distributing these publicly available stories widely online through short films, media clips, drawings, paintings, blogs, and e-newsletters. This project demonstrates a fresh, transferable perspective on strengthening science communication in a way that conjoins scientific discovery with social justice through the promotion of critical thinking by its target audience. Likewise, contributors learn how to better support local communities with each new story and environment. The Biota Project thus sets a symbiotic tone for re-calibrating the balance between academics, researchers, and local communities. When science is made relevant through understanding, its quality and significance are enhanced, and public recognition of its value is increased.


Asunto(s)
Comunicación , Multimedia , Ciencia en las Artes , Ciencia/educación , Biota
7.
mSystems ; 3(3)2018.
Artículo en Inglés | MEDLINE | ID: mdl-29719870

RESUMEN

Increasing rates of antibiotic-resistant bacterial infection are one of the most pressing contemporary global health concerns. The ESKAPE pathogens (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species) have been identified as the leading global cause of multidrug-resistant bacterial infections, and overexpression of multidrug efflux (MEX) transport systems has been identified as one of the most critical mechanisms facilitating the evolution of multidrug resistance in ESKAPE pathogens. Despite efforts to develop efflux pump inhibitors to combat antibiotic resistance, the need persists to identify additional targets for future investigations. We evaluated evolutionary pressures on 110 MEX-encoding genes from all annotated ESKAPE organism genomes. We identify several MEX genes under stabilizing selection-representing targets which can facilitate broad-spectrum treatments with evolutionary constraints limiting the potential emergence of escape mutants. We also examine MEX systems being evaluated as drug targets, demonstrating that divergent selection may underlie some of the problems encountered in the development of effective treatments-specifically in relation to the NorA system in S. aureus. This study provides a comprehensive evolutionary context to efflux in the ESKAPE pathogens, which will provide critical context to the evaluation of efflux systems as antibiotic targets. IMPORTANCE Increasing rates of antibiotic-resistant bacterial infection are one of the most pressing contemporary global health concerns. The ESKAPE pathogen group represents the leading cause of these infections, and upregulation of efflux pump expression is a significant mechanism of resistance in these pathogens. This has resulted in substantial interest in the development of efflux pump inhibitors to combat antibiotic-resistant infections; however, no widespread treatments have been developed to date. Our study evaluates an often-underappreciated aspect of resistance-the impact of evolutionary selection. We evaluate selection on all annotated efflux genes in all sequenced ESKAPE pathogens, providing critical context for and insight into current and future development of efflux-targeting treatments for resistant bacterial infections.

8.
Gen Comp Endocrinol ; 264: 16-27, 2018 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-29678725

RESUMEN

A novel heterodimeric glycoprotein hormone (GpH) comprised of alpha (GpA2) and beta (GpB5) subunits was discovered in 2002 and called thyrostimulin for its ability to activate the TSH receptor in mammals, but its central function in vertebrates has not been firmly established. We report here the cloning and expression of lamprey (l)GpB5, and its ability to heterodimerize with lGpA2 to form a functional l-thyrostimulin. The full-length cDNA of lGpB5 encodes 174 amino acids with ten conserved cysteine residues and one glycosylation site that is conserved with other vertebrate GpB5 sequences. Phylogenetic and synteny analyses support that lGpB5 belongs to the vertebrate GpB5 clade. Heterodimerization of lGpB5 and lGpA2 was shown by nickel pull-down of histidine-tagged recombinant subunits. RNA transcripts of lGpB5 were detected in the pituitary of lampreys during both parasitic and adult life stages. Intraperitoneal injection with lGnRH-III (100 µg/kg) increased pituitary lGpA2, lGpB5, and lGpHß mRNA expression in sexually mature, adult female lampreys. A recombinant l-thyrostimulin produced by expression of a fusion gene in Pichia pastoris activated lamprey GpH receptors I and II as measured by cAMP enzymeimmunoassay. In contrast to jawed vertebrates that have pituitary LH, FSH, and TSH, our data support that lampreys only have two functional pituitary GpHs, lGpH and l-thyrostimulin, which consist of lGpA2 and unique beta subunits. It is hypothesized that lGpH and l-thyrostimulin differentially regulate reproductive and thyroid activities in some unknown way(s) in lampreys.


Asunto(s)
Hormonas Glicoproteicas de Subunidad alfa/genética , Glicoproteínas/genética , Lampreas/metabolismo , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Clonación Molecular , Femenino , Perfilación de la Expresión Génica , Hormonas Glicoproteicas de Subunidad alfa/química , Hormonas Glicoproteicas de Subunidad alfa/metabolismo , Hormona Liberadora de Gonadotropina/metabolismo , Lampreas/crecimiento & desarrollo , Estadios del Ciclo de Vida , Filogenia , Multimerización de Proteína , Proteínas Recombinantes/metabolismo , Sintenía/genética , Distribución Tisular
9.
PLoS Biol ; 15(9): e2002860, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28938018

RESUMEN

Diverse soil-resident bacteria can contribute to plant growth and health, but the molecular mechanisms enabling them to effectively colonize their plant hosts remain poorly understood. We used randomly barcoded transposon mutagenesis sequencing (RB-TnSeq) in Pseudomonas simiae, a model root-colonizing bacterium, to establish a genome-wide map of bacterial genes required for colonization of the Arabidopsis thaliana root system. We identified 115 genes (2% of all P. simiae genes) with functions that are required for maximal competitive colonization of the root system. Among the genes we identified were some with obvious colonization-related roles in motility and carbon metabolism, as well as 44 other genes that had no or vague functional predictions. Independent validation assays of individual genes confirmed colonization functions for 20 of 22 (91%) cases tested. To further characterize genes identified by our screen, we compared the functional contributions of P. simiae genes to growth in 90 distinct in vitro conditions by RB-TnSeq, highlighting specific metabolic functions associated with root colonization genes. Our analysis of bacterial genes by sequence-driven saturation mutagenesis revealed a genome-wide map of the genetic determinants of plant root colonization and offers a starting point for targeted improvement of the colonization capabilities of plant-beneficial microbes.


Asunto(s)
Arabidopsis/microbiología , Genes Bacterianos , Pseudomonas/genética , Mapeo Cromosómico , Cromosomas Bacterianos , Código de Barras del ADN Taxonómico , Elementos Transponibles de ADN , ADN Bacteriano , Mutación , Raíces de Plantas/microbiología , Pseudomonas/crecimiento & desarrollo
10.
Toxicon ; 74: 215-24, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23994590

RESUMEN

Cone snails, genus Conus, are predatory marine snails that use venom to capture their prey. This venom contains a diverse array of peptide toxins, known as conotoxins, which undergo a diverse set of posttranslational modifications. Amidating enzymes modify peptides and proteins containing a C-terminal glycine residue, resulting in loss of the glycine residue and amidation of the preceding residue. A significant fraction of peptides present in the venom of cone snails contain C-terminal amidated residues, which are important for optimizing biological activity. This study describes the characterization of the amidating enzyme, peptidylglycine α-amidating monooxygenase (PAM), present in the venom duct of cone snails, Conus bullatus and Conus geographus. PAM is known to carry out two functions, peptidyl α-hydroxylating monooxygenase (PHM) and peptidylamido-glycolate lyase (PAL). In some animals, such as Drosophila melanogaster, these two functions are present in separate polypeptides, working as individual enzymes. In other animals, such as mammals and in Aplysia californica, PAM activity resides in a single, bifunctional polypeptide. Using specific oligonucleotide primers and reverse transcription-polymerase chain reaction we have identified and cloned from the venom duct cDNA library, a cDNA with 49% homology to PAM from A. californica. We have determined that both the PHM and PAL activities are encoded in one mRNA polynucleotide in both C. bullatus and C. geographus. We have directly demonstrated enzymatic activity catalyzing the conversion of dansyl-YVG-COOH to dansyl-YV-NH2 in cloned cDNA expressed in Drosophila S2 cells.


Asunto(s)
Conotoxinas/química , Caracol Conus/química , Oxigenasas de Función Mixta/química , Complejos Multienzimáticos/química , Secuencia de Aminoácidos , Animales , Línea Celular , Clonación Molecular , Drosophila/citología , Drosophila/genética , Biblioteca de Genes , Oxigenasas de Función Mixta/genética , Datos de Secuencia Molecular , Complejos Multienzimáticos/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Análisis de Secuencia de ADN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...