Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
2.
Methods Mol Biol ; 2654: 91-111, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37106177

RESUMEN

Affinity maturation of B cell clones within germinal centers constitutes an important mechanism for immune memory. During this process, B cell receptor signaling capacity is tested in multiple rounds of positive selection. Antigen stimulation and co-stimulatory signals mobilize calcium to switch on gene expression leading to proliferation and survival and to differentiation into memory B cells and plasma cells. Additionally, all these processes require adaption of B cell metabolism, and calcium signaling and metabolic pathways are closely interlinked. Mitochondrial adaption, ROS production, and NADPH oxidase activation are involved in cell fate decisions, but it remains elusive to what extent, especially because the analysis of these dynamic processes in germinal centers has to take place in vivo. Here, we introduce a quantitative intravital imaging method for combined measurement of cytoplasmic calcium concentration and enzymatic fingerprinting in germinal center B cells as a possible tool in order to further examine the relationship of calcium signaling and immunometabolism.


Asunto(s)
Calcio , NAD , NAD/metabolismo , Calcio/metabolismo , Transferencia Resonante de Energía de Fluorescencia , Centro Germinal , Receptores de Antígenos de Linfocitos B/metabolismo
3.
Nat Commun ; 13(1): 2460, 2022 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-35513371

RESUMEN

Infection or vaccination leads to the development of germinal centers (GC) where B cells evolve high affinity antigen receptors, eventually producing antibody-forming plasma cells or memory B cells. Here we follow the migratory pathways of B cells emerging from germinal centers (BEM) and find that many BEM cells migrate into the lymph node subcapsular sinus (SCS) guided by sphingosine-1-phosphate (S1P). From the SCS, BEM cells may exit the lymph node to enter distant tissues, while some BEM cells interact with and take up antigen from SCS macrophages, followed by CCL21-guided return towards the GC. Disruption of local CCL21 gradients inhibits the recycling of BEM cells and results in less efficient adaption to antigenic variation. Our findings thus suggest that the recycling of antigen variant-specific BEM cells and transport of antigen back to GC may support affinity maturation to antigenic drift.


Asunto(s)
Deriva y Cambio Antigénico , Células B de Memoria , Linfocitos B , Centro Germinal , Ganglios Linfáticos
4.
Cell Rep ; 37(4): 109878, 2021 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-34706240

RESUMEN

Blood endothelial cells display remarkable plasticity depending on the demands of a malignant microenvironment. While studies in solid tumors focus on their role in metabolic adaptations, formation of high endothelial venules (HEVs) in lymph nodes extends their role to the organization of immune cell interactions. As a response to lymphoma growth, blood vessel density increases; however, the fate of HEVs remains elusive. Here, we report that lymphoma causes severe HEV regression in mouse models that phenocopies aggressive human B cell lymphomas. HEV dedifferentiation occurrs as a consequence of a disrupted lymph-carrying conduit system. Mechanosensitive fibroblastic reticular cells then deregulate CCL21 migration paths, followed by deterioration of dendritic cell proximity to HEVs. Loss of this crosstalk deprives HEVs of lymphotoxin-ß-receptor (LTßR) signaling, which is indispensable for their differentiation and lymphocyte transmigration. Collectively, this study reveals a remodeling cascade of the lymph node microenvironment that is detrimental for immune cell trafficking in lymphoma.


Asunto(s)
Movimiento Celular , Células Endoteliales/metabolismo , Linfocitos/metabolismo , Linfoma de Células B/metabolismo , Animales , Células Endoteliales/patología , Humanos , Células Jurkat , Linfocitos/patología , Linfoma de Células B/patología , Ratones , Ratones Transgénicos , Vénulas
5.
Nat Immunol ; 22(10): 1231-1244, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34556887

RESUMEN

The generation of lymphoid tissues during embryogenesis relies on group 3 innate lymphoid cells (ILC3) displaying lymphoid tissue inducer (LTi) activity and expressing the master transcription factor RORγt. Accordingly, RORγt-deficient mice lack ILC3 and lymphoid structures, including lymph nodes (LN). Whereas T-bet affects differentiation and functions of ILC3 postnatally, the role of T-bet in regulating fetal ILC3 and LN formation remains completely unknown. Using multiple mouse models and single-cell analyses of fetal ILCs and ILC progenitors (ILCP), here we identify a key role for T-bet during embryogenesis and show that its deficiency rescues LN formation in RORγt-deficient mice. Mechanistically, T-bet deletion skews the differentiation fate of fetal ILCs and promotes the accumulation of PLZFhi ILCP expressing central LTi molecules in a RORα-dependent fashion. Our data unveil an unexpected role for T-bet and RORα during embryonic ILC function and highlight that RORγt is crucial in counteracting the suppressive effects of T-bet.


Asunto(s)
Diferenciación Celular/inmunología , Inmunidad Innata/inmunología , Ganglios Linfáticos/inmunología , Linfocitos/inmunología , Miembro 1 del Grupo F de la Subfamilia 1 de Receptores Nucleares/inmunología , Proteínas de Dominio T Box/inmunología , Animales , Linaje de la Célula/inmunología , Femenino , Tejido Linfoide/inmunología , Ratones , Miembro 3 del Grupo F de la Subfamilia 1 de Receptores Nucleares/inmunología , Linfocitos T Colaboradores-Inductores/inmunología
6.
Nat Commun ; 12(1): 3796, 2021 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-34145278

RESUMEN

The cell biology of circadian clocks is still in its infancy. Here, we describe an efficient strategy for generating knock-in reporter cell lines using CRISPR technology that is particularly useful for genes expressed transiently or at low levels, such as those coding for circadian clock proteins. We generated single and double knock-in cells with endogenously expressed PER2 and CRY1 fused to fluorescent proteins allowing us to simultaneously monitor the dynamics of CRY1 and PER2 proteins in live single cells. Both proteins are highly rhythmic in the nucleus of human cells with PER2 showing a much higher amplitude than CRY1. Surprisingly, CRY1 protein is nuclear at all circadian times indicating the absence of circadian gating of nuclear import. Furthermore, in the nucleus of individual cells CRY1 abundance rhythms are phase-delayed (~5 hours), and CRY1 levels are much higher (>5 times) compared to PER2 questioning the current model of the circadian oscillator.


Asunto(s)
Proteínas CLOCK/metabolismo , Relojes Circadianos/fisiología , Criptocromos/metabolismo , Proteínas Circadianas Period/metabolismo , Análisis de la Célula Individual/métodos , Sistemas CRISPR-Cas/genética , Línea Celular Tumoral , Ritmo Circadiano/fisiología , Criptocromos/genética , Técnicas de Sustitución del Gen/métodos , Genes Reporteros/genética , Células HCT116 , Humanos , Proteínas Circadianas Period/genética
7.
Methods Mol Biol ; 2308: 163-176, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34057723

RESUMEN

Decade-long survival of plasma cells in the bone marrow has long been a puzzling matter. To understand how plasma cells are maintained and supported by survival-niches to account for lifelong antibody production demands new intravital imaging techniques that are able to follow up a single cell and their interaction with other cell types in situ. We achieved to successfully establish longitudinal imaging of the bone marrow (LIMB) that is based on an implantable endoscopic device. In this chapter, basic approaches on how to investigate plasma cell-stroma interaction and surgical implantation procedures are introduced.


Asunto(s)
Células de la Médula Ósea/fisiología , Médula Ósea/fisiología , Microambiente Celular , Procesamiento de Imagen Asistido por Computador , Microscopía Intravital , Microscopía de Fluorescencia por Excitación Multifotónica , Células Plasmáticas/fisiología , Traslado Adoptivo , Animales , Médula Ósea/metabolismo , Células de la Médula Ósea/metabolismo , Trasplante de Médula Ósea , Separación Celular , Genes Reporteros , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Ratones Transgénicos , Células Plasmáticas/metabolismo , Factor 1 de Unión al Dominio 1 de Regulación Positiva/genética , Factor 1 de Unión al Dominio 1 de Regulación Positiva/metabolismo
8.
Elife ; 102021 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-33749591

RESUMEN

Calcium is a universal second messenger present in all eukaryotic cells. The mobilization and storage of Ca2+ ions drives a number of signaling-related processes, stress-responses, or metabolic changes, all of which are relevant for the development of immune cells and their adaption to pathogens. Here, we introduce the Förster resonance energy transfer (FRET)-reporter mouse YellowCaB expressing the genetically encoded calcium indicator TN-XXL in B lymphocytes. Calcium-induced conformation change of TN-XXL results in FRET-donor quenching measurable by two-photon fluorescence lifetime imaging. For the first time, using our novel numerical analysis, we extract absolute cytoplasmic calcium concentrations in activated B cells during affinity maturation in vivo. We show that calcium in activated B cells is highly dynamic and that activation introduces a persistent calcium heterogeneity to the lineage. A characterization of absolute calcium concentrations present at any time within the cytosol is therefore of great value for the understanding of long-lived beneficial immune responses and detrimental autoimmunity.


Asunto(s)
Linfocitos B/metabolismo , Transferencia Resonante de Energía de Fluorescencia/métodos , Activación de Linfocitos , Animales , Femenino , Masculino , Ratones
9.
Front Mol Biosci ; 7: 62, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32426367

RESUMEN

The multiple sclerosis therapeutic teriflunomide is known to block the de novo synthesis of pyrimidine in mitochondria by inhibiting the enzyme dihydroorotate-dehydrogenase (DHODH). The metabolic processes of oxidative phosphorylation and glycolysis are further possible downstream targets. In healthy adult mice, high levels of dihydroorotate-dehydrogenase (DHODH) activity are measured in the central nervous system (CNS), and DHODH inhibition may cause indirect effects on reactive oxygen species production and NADPH oxidase (NOX) mediated oxidative stress, known to be key aspects of the inflammatory response of the CNS. However, little is known about the effect of teriflunomide on the dynamics of NOX activation in CNS cells and subsequent alterations of neuronal function in vivo. In this study, we employed fluorescence lifetime imaging (FLIM) and phasor analysis of the endogeneous fluorescence of NAD(P)H (nicotinamide adenine dinucleotide phosphate) in the brain stem of mice to visualize the effect of teriflunomide on cellular metabolism. Furthermore, we simultaneously studied neuronal Ca2+ signals in transgenic mice with a FRET-based Troponin C Ca2+ sensor based (CerTN L15) quantified using FRET-FLIM. Hence, we directly correlated neuronal (dys-)function indicated by steadily elevated calcium levels with metabolic activity in neurons and surrounding CNS tissue. Employing our intravital co-registered imaging approach, we could not detect any significant alteration of NOX activation after incubation of the tissue with teriflunomide. Furthermore, we could not detect any changes of the inflammatory induced neuronal dysfunction due to local treatment with teriflunomide. Concerning drug safety, we can confirm that teriflunomide has no metabolic effects on neuronal function in the CNS tissue during neuroinflammation at concentrations expected in orally treated patients. The combined endogenous FLIM and calcium imaging approach developed by us and employed here uniquely meets the need to monitor cellular metabolism as a basic mechanism of tissue functions in vivo.

10.
Acta Neuropathol Commun ; 5(1): 88, 2017 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-29178933

RESUMEN

Although oligoclonal bands in the cerebrospinal fluid have been a hallmark of multiple sclerosis diagnosis for over three decades, the role of antibody-secreting cells in multiple sclerosis remains unclear. T and B cells are critical for multiple sclerosis pathogenesis, but increasing evidence suggests that plasma cells also contribute, through secretion of autoantibodies. Long-lived plasma cells are known to drive various chronic inflammatory conditions as e.g. systemic lupus erythematosus, however, to what extent they are present in autoimmune central nervous system inflammation has not yet been investigated. In brain biopsies from multiple sclerosis patients and other neurological diseases, we could detect non-proliferating plasma cells (CD138+Ki67-) in the parenchyma. Based on this finding, we hypothesized that long-lived plasma cells can persist in the central nervous system (CNS). In order to test this hypothesis, we adapted the multiple sclerosis mouse model experimental autoimmune encephalomyelitis to generate a B cell memory response. Plasma cells were found in the meninges and the parenchyma of the inflamed spinal cord, surrounded by tissue areas resembling survival niches for these cells, characterized by an up-regulation of chemokines (CXCL12), adhesion molecules (VCAM-1) and survival factors (APRIL and BAFF). In order to determine the lifetime of plasma cells in the chronically inflamed CNS, we labeled the DNA of proliferating cells with 5-ethynyl-2'-deoxyuridine (EdU). Up to five weeks later, we could detect EdU+ long-lived plasma cells in the murine CNS. To our knowledge, this is the first study describing non-proliferating plasma cells directly in the target tissue of a chronic inflammation in humans, as well as the first evidence demonstrating the ability of plasma cells to persist in the CNS, and the ability of the chronically inflamed CNS tissue to promote this persistence. Hence, our results suggest that the CNS provides survival niches for long-lived plasma cells, similar to the niches found in other organs. Targeting these cells in the CNS offers new perspectives for treatment of chronic autoimmune neuroinflammatory diseases, especially in patients who do not respond to conventional therapies.


Asunto(s)
Encefalomielitis Autoinmune Experimental/patología , Esclerosis Múltiple/patología , Tejido Parenquimatoso/patología , Células Plasmáticas/patología , Adulto , Anciano , Animales , Antígenos CD/metabolismo , Proteínas de Unión al Calcio , Quimiocina CXCL12/metabolismo , Proteínas de Unión al ADN/metabolismo , Modelos Animales de Enfermedad , Femenino , Citometría de Flujo , Proteína Ácida Fibrilar de la Glía/metabolismo , Humanos , Antígeno Ki-67/metabolismo , Masculino , Ratones , Proteínas de Microfilamentos , Persona de Mediana Edad , Molécula 1 de Adhesión Celular Vascular/metabolismo , Adulto Joven
11.
Sci Rep ; 7(1): 7101, 2017 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-28769068

RESUMEN

Simultaneous detection of multiple cellular and molecular players in their native environment, one of the keys to a full understanding of immune processes, remains challenging for in vivo microscopy. Here, we present a synergistic strategy for spectrally multiplexed in vivo imaging composed of (i) triple two-photon excitation using spatiotemporal synchronization of two femtosecond lasers, (ii) a broad set of fluorophores with emission ranging from blue to near infrared, (iii) an effective spectral unmixing algorithm. Using our approach, we simultaneously excite and detect seven fluorophores expressed in distinct cellular and tissue compartments, plus second harmonics generation from collagen fibers in lymph nodes. This enables us to visualize the dynamic interplay of all the central cellular players during germinal center reactions. While current in vivo imaging typically enables recording the dynamics of 4 tissue components at a time, our strategy allows a more comprehensive analysis of cellular dynamics involving 8 single-labeled compartments. It enables to investigate the orchestration of multiple cellular subsets determining tissue function, thus, opening the way for a mechanistic understanding of complex pathophysiologic processes in vivo. In the future, the design of transgenic mice combining a larger spectrum of fluorescent proteins will reveal the full potential of our method.


Asunto(s)
Microscopía de Fluorescencia por Excitación Multifotónica , Algoritmos , Animales , Línea Celular , Centro Germinal/citología , Centro Germinal/metabolismo , Humanos , Procesamiento de Imagen Asistido por Computador , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Microscopía de Fluorescencia por Excitación Multifotónica/instrumentación , Microscopía de Fluorescencia por Excitación Multifotónica/métodos , Bazo/citología , Bazo/metabolismo
12.
Methods Mol Biol ; 1623: 37-50, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28589345

RESUMEN

Due to the multitude of cell types involved in the differentiation of plasma cells during the germinal center reaction, and due to a lack of in vitro systems, which recapitulate germinal centers, the most suitable way to study plasma cell generation in germinal centers is in vivo. In this chapter we describe how to induce humoral immune responses to defined model antigens and how to visualize and track plasma cells and their interactions with other cells in the lymph nodes of living mice.


Asunto(s)
Diferenciación Celular , Rastreo Celular , Microscopía , Células Plasmáticas/citología , Células Plasmáticas/inmunología , Animales , Linfocitos B/inmunología , Linfocitos B/metabolismo , Linfocitos B/trasplante , Rastreo Celular/métodos , Técnica del Anticuerpo Fluorescente , Centro Germinal/citología , Centro Germinal/inmunología , Centro Germinal/metabolismo , Procesamiento de Imagen Asistido por Computador , Ganglios Linfáticos/citología , Ganglios Linfáticos/inmunología , Ganglios Linfáticos/metabolismo , Ratones , Ratones Transgénicos , Microscopía/métodos , Células Plasmáticas/metabolismo , Factores de Tiempo
13.
Int J Mol Sci ; 16(5): 11713-27, 2015 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-26006244

RESUMEN

The development of intravital Förster Resonance Energy Transfer (FRET) is required to probe cellular and tissue function in the natural context: the living organism. Only in this way can biomedicine truly comprehend pathogenesis and develop effective therapeutic strategies. Here we demonstrate and discuss the advantages and pitfalls of two strategies to quantify FRET in vivo-ratiometrically and time-resolved by fluorescence lifetime imaging-and show their concrete application in the context of neuroinflammation in adult mice.


Asunto(s)
Tronco Encefálico/patología , Calcio/análisis , Encefalomielitis Autoinmune Experimental/patología , Transferencia Resonante de Energía de Fluorescencia/métodos , Microscopía Intravital/métodos , Imagen Óptica/métodos , Animales , Ratones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...