Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Aging Dis ; 2024 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-39012666

RESUMEN

Psoriasis is an immune-mediated, chronic, relapsing, inflammatory, systemic disease induced by individual-environmental interactions, and is often lifelong because of the difficulty of treatment. In recent years, a variety of targeted therapies, including biologics, have improved the lesions and quality of life of most psoriasis patients, but they still do not address the problem of relapse and may be associated with decreased efficacy or adverse events such as infections over time. Therefore, there is an urgent need for breakthroughs in psoriasis treatment and in relapse-delaying and non-pharmacologic strategies, and stem cell therapy for psoriasis has emerged. In recent years, research on stem cell therapy for psoriasis has received a lot of attention, however, there is no reference standard as well as consensus in this field of research. Therefore, according to the latest consensus and guidelines, combined with relevant literature reports, clinical practice experience and the results of discussions with experts, this consensus specifies the types of stem cells commonly used in the treatment of psoriasis, the methods, dosages, and routes of stem cell therapy for psoriasis, as well as the clinical evaluations (efficacy and safety) of stem cell therapy for psoriasis. In addition, this consensus also provides normative standards for the processes of collection, preparation, preservation and quality control of stem cells and their related products, as well as recommendations for the management of stem cells during infusion for the treatment of psoriasis. This consensus provides the latest specific reference standards and practice guidelines for the field of stem cell therapy for psoriasis.

2.
BMC Biol ; 21(1): 256, 2023 11 13.
Artículo en Inglés | MEDLINE | ID: mdl-37953247

RESUMEN

BACKGROUND: Traditionally, in biomedical animal research, laboratory rodents are individually examined in test apparatuses outside of their home cages at selected time points. However, the outcome of such tests can be influenced by various factors and valuable information may be missed when the animals are only monitored for short periods. These issues can be overcome by longitudinally monitoring mice and rats in their home cages. To shed light on the development of home cage monitoring (HCM) and the current state-of-the-art, a systematic review was carried out on 521 publications retrieved through PubMed and Web of Science. RESULTS: Both the absolute (~ × 26) and relative (~ × 7) number of HCM-related publications increased from 1974 to 2020. There was a clear bias towards males and individually housed animals, but during the past decade (2011-2020), an increasing number of studies used both sexes and group housing. In most studies, animals were kept for short (up to 4 weeks) time periods in the HCM systems; intermediate time periods (4-12 weeks) increased in frequency in the years between 2011 and 2020. Before the 2000s, HCM techniques were predominantly applied for less than 12 h, while 24-h measurements have been more frequent since the 2000s. The systematic review demonstrated that manual monitoring is decreasing in relation to automatic techniques but still relevant. Until (and including) the 1990s, most techniques were applied manually but have been progressively replaced by automation since the 2000s. Independent of the year of publication, the main behavioral parameters measured were locomotor activity, feeding, and social behaviors; the main physiological parameters were heart rate and electrocardiography. External appearance-related parameters were rarely examined in the home cages. Due to technological progress and application of artificial intelligence, more refined and detailed behavioral parameters have been investigated in the home cage more recently. CONCLUSIONS: Over the period covered in this study, techniques for HCM of mice and rats have improved considerably. This development is ongoing and further progress as well as validation of HCM systems will extend the applications to allow for continuous, longitudinal, non-invasive monitoring of an increasing range of parameters in group-housed small rodents in their home cages.


Asunto(s)
Inteligencia Artificial , Conducta Animal , Masculino , Femenino , Ratones , Animales , Ratas , Conducta Animal/fisiología , Conducta Social , Frecuencia Cardíaca/fisiología , Animales Domésticos
3.
Altern Lab Anim ; 51(6): 376-386, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37864460

RESUMEN

The search for existing non-animal alternative methods for use in experiments is currently challenging because of the lack of both comprehensive structured databases and balanced keyword-based search strategies to mine unstructured textual databases. In this paper we describe 3Ranker, which is a fast, keyword-independent algorithm for finding non-animal alternative methods for use in biomedical research. The 3Ranker algorithm was created by using a machine learning approach, consisting of a Random Forest model built on a dataset of 35 million abstracts and constructed with weak supervision, followed by iterative model improvement with expert curated data. We found a satisfactory trade-off between sensitivity and specificity, with Area Under the Curve (AUC) values ranging from 0.85-0.95. Trials showed that the AI-based classifier was able to identify articles that describe potential alternatives to animal use, among the thousands of articles returned by generic PubMed queries on dermatitis and Parkinson's disease. Application of the classification models on time series data showed the earlier implementation and acceptance of Three Rs principles in the area of cosmetics and skin research, as compared to the area of neurodegenerative disease research. The 3Ranker algorithm is freely available at www.open3r.org; the future goal is to expand this framework to cover multiple research domains and to enable its broad use by researchers, policymakers, funders and ethical review boards, in order to promote the replacement of animal use in research wherever possible.


Asunto(s)
Enfermedades Neurodegenerativas , Humanos , Algoritmos , Aprendizaje Automático , Bases de Datos Factuales , Sensibilidad y Especificidad
4.
Biology (Basel) ; 12(9)2023 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-37759577

RESUMEN

The facultative loss of muscle mass and function during aging (sarcopenia) poses a serious threat to our independence and health. When activities of daily living are impaired (clinical phase), it appears that the processes leading to sarcopenia have been ongoing in humans for decades (preclinical phase). Here, we examined the natural history of sarcopenia in male outbred rats to compare the occurrence of motor behavioral deficits with the degree of muscle wasting and to explore the muscle-associated processes of the preclinical and clinical phases, respectively. Selected metrics were validated in female rats. We used the soleus muscle because of its long duty cycles and its importance in postural control. Results show that gait and coordination remain intact through middle age (40-60% of median lifespan) when muscle mass is largely preserved relative to body weight. However, the muscle shows numerous signs of remodeling with a shift in myofiber-type composition toward type I. As fiber-type prevalence shifted, fiber-type clustering also increased. The number of hybrid fibers, myofibers with central nuclei, and fibers expressing embryonic myosin increased from being barely detectable to a significant number (5-10%) at late middle age. In parallel, TGFß1, Smad3, FBXO32, and MuRF1 mRNAs increased. In early (25-month-old) and advanced (30-month-old) aging, gait and coordination deteriorate with the progressive loss of muscle mass. In late middle age and early aging due to type II atrophy (>50%) followed by type I atrophy (>50%), the number of myofibers did not correlate with this process. In advanced age, atrophy is accompanied by a decrease in SCs and ßCatenin mRNA, whereas several previously upregulated transcripts were downregulated. The re-expression of embryonic myosin in myofibers and the upregulation of mRNAs encoding the γ-subunit of the nicotinic acetylcholine receptor, the neuronal cell adhesion molecule, and myogenin that begins in late middle age suggest that one mechanism driving sarcopenia is the disruption of neuromuscular connectivity. We conclude that sarcopenia in rats, as in humans, has a long preclinical phase in which muscle undergoes extensive remodeling to maintain muscle mass and function. At later time points, these adaptive mechanisms fail, and sarcopenia becomes clinically manifest.

5.
PLoS One ; 18(6): e0280416, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37363906

RESUMEN

The objective was to exploit the raw data output from a scalable home cage (type IIL IVC) monitoring (HCM) system (DVC®), to characterize pattern of undisrupted rest and physical activity (PA) of C57BL/6J mice. The system's tracking algorithm show that mice in isolation spend 67% of the time in bouts of long rest (≥40s). Sixteen percent is physical activity (PA), split between local movements (6%) and locomotion (10%). Decomposition revealed that a day contains ˜7100 discrete bouts of short and long rest, local and locomotor movements. Mice travel ˜330m per day, mainly during the dark hours, while travelling speed is similar through the light-dark cycle. Locomotor bouts are usually <0.2m and <1% are >1m. Tracking revealed also fits of abnormal behaviour. The starting positions of the bouts showed no preference for the rear over the front of the cage floor, while there was a strong bias for the peripheral (75%) over the central floor area. The composition of bouts has a characteristic circadian pattern, however, intrusive husbandry routines increased bout fragmentation by ˜40%. Extracting electrode activations density (EAD) from the raw data yielded results close to those obtained with the tracking algorithm, with 81% of time in rest (<1 EAD s-1) and 19% in PA. Periods ≥40 s of file when no movement occurs and there is no EAD may correspond to periods of sleep (˜59% of file time). We confirm that EAD correlates closely with movement distance (rs>0.95) and the data agreed in ˜97% of the file time. Thus, albeit EAD being less informative it may serve as a proxy for PA and rest, enabling monitoring group housed mice. The data show that increasing density from one female to two males, and further to three male or female mice had the same effect size on EAD (˜2). In contrast, the EAD deviated significantly from this stepwise increase with 4 mice per cage, suggesting a crowdedness stress inducing sex specific adaptations. We conclude that informative metrics on rest and PA can be automatically extracted from the raw data flow in near-real time (< 1 hrs). As discussed, these metrics relay useful longitudinal information to those that use or care for the animals.


Asunto(s)
Condicionamiento Físico Animal , Problema de Conducta , Masculino , Ratones , Animales , Femenino , Ratones Endogámicos C57BL , Descanso , Sueño
6.
Cell Res ; 31(12): 1244-1262, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34702946

RESUMEN

The infusion of coronavirus disease 2019 (COVID-19) patients with mesenchymal stem cells (MSCs) potentially improves clinical symptoms, but the underlying mechanism remains unclear. We conducted a randomized, single-blind, placebo-controlled (29 patients/group) phase II clinical trial to validate previous findings and explore the potential mechanisms. Patients treated with umbilical cord-derived MSCs exhibited a shorter hospital stay (P = 0.0198) and less time required for symptoms remission (P = 0.0194) than those who received placebo. Based on chest images, both severe and critical patients treated with MSCs showed improvement by day 7 (P = 0.0099) and day 21 (P = 0.0084). MSC-treated patients had fewer adverse events. MSC infusion reduced the levels of C-reactive protein, proinflammatory cytokines, and neutrophil extracellular traps (NETs) and promoted the maintenance of SARS-CoV-2-specific antibodies. To explore how MSCs modulate the immune system, we employed single-cell RNA sequencing analysis on peripheral blood. Our analysis identified a novel subpopulation of VNN2+ hematopoietic stem/progenitor-like (HSPC-like) cells expressing CSF3R and PTPRE that were mobilized following MSC infusion. Genes encoding chemotaxis factors - CX3CR1 and L-selectin - were upregulated in various immune cells. MSC treatment also regulated B cell subsets and increased the expression of costimulatory CD28 in T cells in vivo and in vitro. In addition, an in vivo mouse study confirmed that MSCs suppressed NET release and reduced venous thrombosis by upregulating kindlin-3 signaling. Together, our results underscore the role of MSCs in improving COVID-19 patient outcomes via maintenance of immune homeostasis.


Asunto(s)
COVID-19/terapia , Inmunomodulación , Trasplante de Células Madre Mesenquimatosas , Anciano , Animales , Anticuerpos Antivirales/sangre , Subgrupos de Linfocitos B/citología , Subgrupos de Linfocitos B/inmunología , Subgrupos de Linfocitos B/metabolismo , Proteína C-Reactiva/análisis , COVID-19/inmunología , COVID-19/virología , Citocinas/genética , Citocinas/metabolismo , Proteínas del Citoesqueleto/metabolismo , Modelos Animales de Enfermedad , Trampas Extracelulares/metabolismo , Femenino , Humanos , Leucocitos Mononucleares/citología , Leucocitos Mononucleares/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Persona de Mediana Edad , SARS-CoV-2/aislamiento & purificación , Linfocitos T/citología , Linfocitos T/inmunología , Linfocitos T/metabolismo , Trombosis de la Vena/metabolismo , Trombosis de la Vena/patología
7.
Front Genet ; 12: 688526, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34276788

RESUMEN

We here review the loss of muscle function and mass (sarcopenia) in the framework of human healthspan and lifespan, and mechanisms involved in aging. The rapidly changing composition of the human population will impact the incidence and the prevalence of aging-induced disorders such as sarcopenia and, henceforth, efforts to narrow the gap between healthspan and lifespan should have top priority. There are substantial knowledge gaps in our understanding of aging. Heritability is estimated to account for only 25% of lifespan length. However, as we push the expected lifespan at birth toward those that we consider long-lived, the genetics of aging may become increasingly important. Linkage studies of genetic polymorphisms to both the susceptibility and aggressiveness of sarcopenia are still missing. Such information is needed to shed light on the large variability in clinical outcomes between individuals and why some respond to interventions while others do not. We here make a case for the concept that sarcopenia has a neurogenic origin and that in manifest sarcopenia, nerve and myofibers enter into a vicious cycle that will escalate the disease progression. We point to gaps in knowledge, for example the crosstalk between the motor axon, terminal Schwann cell, and myofiber in the denervation processes that leads to a loss of motor units and muscle weakness. Further, we argue that the operational definition of sarcopenia should be complemented with dynamic metrics that, along with validated biomarkers, may facilitate early preclinical diagnosis of individuals vulnerable to develop advanced sarcopenia. We argue that preventive measures are likely to be more effective to counter act aging-induced disorders than efforts to treat manifest clinical conditions. To achieve compliance with a prescription of preventive measures that may be life-long, we need to identify reliable predictors to design rational and convincing interventions.

8.
Sci Rep ; 11(1): 4961, 2021 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-33654141

RESUMEN

The mouse is the most important mammalian model in life science research and the behavior of the mouse is a key read-out of experimental interventions and genetic manipulations. To serve this purpose a solid understanding of the mouse normal behavior is a prerequisite. Using 14-19 months of cumulative 24/7 home-cage activity recorded with a non-intrusive technique, evidence is here provided for a highly significant circannual oscillation in spontaneous activity (1-2 SD of the mean, on average 65% higher during peak of highs than lows; P = 7E-50) of male and female C57BL/6 mice held under constant conditions. The periodicity of this hitherto not recognized oscillation is in the range of 2-4 months (average estimate was 97 days across cohorts of cages). It off-sets responses to environmental stimuli and co-varies with the feeding behavior but does not significantly alter the preference for being active during the dark hours. The absence of coordination of this rhythmicity between cages with mice or seasons of the year suggest that the oscillation of physical activity is generated by a free-running intrinsic oscillator devoid of external timer. Due to the magnitude of this rhythmic variation it may be a serious confounder in experiments on mice if left unrecognized.


Asunto(s)
Conducta Alimentaria/fisiología , Vivienda para Animales , Actividad Motora/fisiología , Condicionamiento Físico Animal/fisiología , Animales , Femenino , Masculino , Ratones
9.
FASEB J ; 34(2): 2024-2040, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31909582

RESUMEN

Docosahexaenoic acid (DHA) is a ω-3 fatty acid typically obtained from the diet or endogenously synthesized through the action of elongases (ELOVLs) and desaturases. DHA is a key central nervous system constituent and the precursor of several molecules that regulate the resolution of inflammation. In the present study, we questioned whether the impaired synthesis of DHA affected neural plasticity and inflammatory status in the adult brain. To address this question, we investigated neural and inflammatory markers from mice deficient for ELOVL2 (Elovl2-/- ), the key enzyme in DHA synthesis. From our findings, Elovl2-/- mice showed an altered expression of markers involved in synaptic plasticity, learning, and memory formation such as Egr-1, Arc1, and BDNF specifically in the cerebral cortex, impacting behavioral functions only marginally. In parallel, we also found that DHA-deficient mice were characterized by an increased expression of pro-inflammatory molecules, namely TNF, IL-1ß, iNOS, caspase-1 as well as the activation and morphologic changes of microglia in the absence of any brain injury or disease. Reintroducing DHA in the diet of Elovl2-/- mice reversed such alterations in brain plasticity and inflammation. Hence, impairment of systemic DHA synthesis can modify the brain inflammatory and neural plasticity status, supporting the view that DHA is an essential fatty acid with an important role in keeping inflammation within its physiologic boundary and in shaping neuronal functions in the central nervous system.


Asunto(s)
Encéfalo/metabolismo , Ácidos Docosahexaenoicos/biosíntesis , Regulación de la Expresión Génica , Microglía/metabolismo , Plasticidad Neuronal , Animales , Biomarcadores/metabolismo , Encéfalo/patología , Factor Neurotrófico Derivado del Encéfalo/biosíntesis , Factor Neurotrófico Derivado del Encéfalo/genética , Caspasa 1/biosíntesis , Caspasa 1/genética , Ácidos Docosahexaenoicos/genética , Proteína 1 de la Respuesta de Crecimiento Precoz/biosíntesis , Proteína 1 de la Respuesta de Crecimiento Precoz/genética , Elongasas de Ácidos Grasos/deficiencia , Elongasas de Ácidos Grasos/metabolismo , Inflamación/genética , Inflamación/metabolismo , Interleucina-1beta/biosíntesis , Interleucina-1beta/genética , Ratones , Ratones Noqueados , Microglía/patología , Factor de Necrosis Tumoral alfa/biosíntesis , Factor de Necrosis Tumoral alfa/genética
10.
J Gerontol A Biol Sci Med Sci ; 75(4): 654-663, 2020 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-31002330

RESUMEN

Participants of the population-based Uppsala longitudinal study of adult men (ULSAM) cohort reaching more than 88 years of age (survivors, S) were investigated at age 70, 82, and 88-90 and compared at 70 years with non-survivors (NS) not reaching 82 years. Body composition, muscle mass and muscle histology were remarkably stable over 18 years of advanced aging in S. Analysis of genes involved in muscle remodeling showed that S had higher mRNA levels of myogenic differentiation factors (Myogenin, MyoD), embryonic myosin (eMyHC), enzymes involved in regulated breakdown of myofibrillar proteins (Smad2, Trim32, MuRF1,) and NCAM compared with healthy adult men (n = 8). S also had higher mRNA levels of eMyHC, Smad 2, MuRF1 compared with NS. At 88 years, S expressed decreased levels of Myogenin, MyoD, eMyHC, NCAM and Smad2 towards those seen in NS at 70 years. The gene expression pattern of S at 70 years was likely beneficial since they maintained muscle fiber histology and appendicular lean body mass until advanced age. The expression pattern at 88 years may indicate a diminished muscle remodeling coherent with a decline of reinnervation capacity and/or plasticity at advanced age.


Asunto(s)
Envejecimiento/metabolismo , Envejecimiento/patología , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Anciano , Anciano de 80 o más Años , Envejecimiento/genética , Composición Corporal , Estudios de Cohortes , Humanos , Vida Independiente , Estudios Longitudinales , Masculino , Persona de Mediana Edad , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/patología , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Fuerza Muscular , ARN Mensajero/genética , ARN Mensajero/metabolismo , Sarcopenia/genética , Sarcopenia/metabolismo , Sarcopenia/patología , Suecia
11.
Acta Physiol (Oxf) ; 227(3): e13335, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31199566

RESUMEN

AIM: To resolve timing and coordination of denervation atrophy and the re-innervation recovery process to discern correlations indicative of common programs governing these processes. METHODS: Female Sprague-Dawley (SD) rats had a unilateral sciatic nerve crush. Based on longitudinal behavioural observations, the triceps surae muscle was analysed at different time points post-lesion. RESULTS: Crush results in a loss of muscle function and mass (-30%) followed by a recovery to almost pre-lesion status at 30 days post-crush (dpc). There was no loss of fibres nor any significant change in the number of nuclei per fibre but a shift in fibres expressing myosins I and II that reverted back to control levels at 30 dpc. A residual was the persistence of hybrid fibres. Early on a CHNR -ε to -γ switch and a re-expression of embryonic MyHC showed as signs of denervation. Foxo1, Smad3, Fbxo32 and Trim63 transcripts were upregulated but not Myostatin, InhibinA and ActivinR2B. Combined this suggests that the mechanism instigating atrophy provides a selectivity of pathway(s) activated. The myogenic differentiation factors (MDFs: Myog, Myod1 and Myf6) were upregulated early on suggesting a role also in the initial atrophy. The regulation of these transcripts returned towards baseline at 30 dpc. The examined genes showed a strong baseline covariance in transcript levels which dissolved in the response to crush driven mainly by the MDFs. At 30 dpc the naïve expression pattern was re-established. CONCLUSION: Peripheral nerve crush offers an excellent model to assess and interfere with muscle adaptions to denervation and re-innervation.


Asunto(s)
Conducta Animal , Atrofia Muscular/etiología , Compresión Nerviosa , Recuperación de la Función/fisiología , Neuropatía Ciática/patología , Animales , Femenino , Miembro Posterior/patología , Desnervación Muscular , Músculo Esquelético/patología , Atrofia Muscular/patología , Ratas , Ratas Sprague-Dawley
12.
Hum Mol Genet ; 24(5): 1305-21, 2015 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-25343989

RESUMEN

Hutchinson-Gilford progeria syndrome (HGPS) is a segmental progeroid syndrome with multiple features suggestive of premature accelerated aging. Accumulation of progerin is thought to underlie the pathophysiology of HGPS. However, despite ubiquitous expression of lamin A in all differentiated cells, the HGPS mutation results in organ-specific defects. For example, bone and skin are strongly affected by HGPS, while the brain appears to be unaffected. There are no definite explanations as to the variable sensitivity to progeria disease among different organs. In addition, low levels of progerin have also been found in several tissues from normal individuals, but it is not clear if low levels of progerin contribute to the aging of the brain. In an attempt to clarify the origin of this phenomenon, we have developed an inducible transgenic mouse model with expression of the most common HGPS mutation in brain, skin, bone and heart to investigate how the mutation affects these organs. Ultrastructural analysis of neuronal nuclei after 70 weeks of expression of the LMNA c.1824C>T mutation showed severe distortion with multiple lobulations and irregular extensions. Despite severe distortions in the nuclei of hippocampal neurons of HGPS animals, there were only negligible changes in gene expression after 63 weeks of transgenic expression. Behavioral analysis and neurogenesis assays, following long-term expression of the HGPS mutation, did not reveal significant pathology. Our results suggest that certain tissues are protected from functional deleterious effects of progerin.


Asunto(s)
Envejecimiento/genética , Regulación de la Expresión Génica , Hipocampo/metabolismo , Lamina Tipo A/metabolismo , Células Madre/metabolismo , Envejecimiento Prematuro/genética , Animales , Diferenciación Celular , Femenino , Procesamiento de Imagen Asistido por Computador , Lamina Tipo A/genética , Lamina Tipo B/genética , Lamina Tipo B/metabolismo , Masculino , Ratones , Ratones Transgénicos , Neurogénesis , Neuronas/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo
13.
Exp Gerontol ; 48(11): 1173-9, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23871848

RESUMEN

We report here beneficial effects of life-long dietary restriction on the progression of age-associated cochlear degeneration in female Sprague-Dawley rats. Thirty-month old rats on a 70% dietary restriction were compared to ad libitum fed age-matched rats, and three-month old adult rats. As expected, aged dietary restricted rats displayed about 20% higher survival rate than age-matched rats fed ad libitum. This difference was reflected also in the auditory system. In the dietary restricted group, 73% of the subjects had preserved auditory reflexes (Preyer), and only modest degeneration of the stria vascularis of the inner ear was observed. In contrast, aged ad libitum fed animals, of which only 15% had detectable Preyer reflexes, showed a marked thinning, cellular degeneration and loss of cell processes in the stria vascularis. The extent of loss of sensory hair cells (~24%) was similar in both the aged groups, and neither group showed a significant reduction in the number of spiral ganglion neurons across adult life-span. The observations thus demonstrate that dietary restriction delays age-related degradation of the auditory system. The results provide further insights into the mechanisms of strial presbycusis.


Asunto(s)
Envejecimiento/patología , Envejecimiento/fisiología , Restricción Calórica , Estría Vascular/patología , Estría Vascular/fisiología , Animales , Modelos Animales de Enfermedad , Femenino , Microscopía Electrónica de Transmisión , Neuronas/patología , Presbiacusia/patología , Presbiacusia/fisiopatología , Presbiacusia/prevención & control , Ratas , Ratas Sprague-Dawley , Reflejo Acústico/fisiología , Ganglio Espiral de la Cóclea/inervación , Ganglio Espiral de la Cóclea/patología , Ganglio Espiral de la Cóclea/fisiopatología
14.
J Physiol ; 590(23): 6187-97, 2012 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-22988144

RESUMEN

Mitochondrial dysfunction can drastically impair muscle function, with weakness and exercise intolerance as key symptoms. Here we examine the time course of development of muscle dysfunction in a mouse model of premature ageing induced by defective proofreading function of mitochondrial DNA (mtDNA) polymerase (mtDNA mutator mouse). Isolated fast-twitch muscles and single muscle fibres from young (3-5 months) and end-stage (11 months) mtDNA mutator mice were compared to age-matched control mice. Force and free myoplasmic [Ca(2+)] ([Ca(2+)](i)) were measured under resting conditions and during fatigue induced by repeated tetani. Muscles of young mtDNA mutator mice displayed no weakness in the rested state, but had lower force and [Ca(2+)](i) than control mice during induction of fatigue. Muscles of young mtDNA mutator mice showed decreased activities of citrate synthase and ß-hydroxyacyl-coenzyme A dehydrogenase, reduced expression of cytochrome c oxidase, and decreased expression of triggers of mitochondrial biogenesis (PGC-1α, PPARα, AMPK). Muscles from end-stage mtDNA mutator mice showed weakness under resting conditions with markedly decreased tetanic [Ca(2+)](i), force per cross-sectional area and protein expression of the sarcoplasmic reticulum Ca(2+) pump (SERCA1). In conclusion, fast-twitch muscles of prematurely ageing mtDNA mutator mice display a sequence of deleterious mitochondrial-to-nucleus signalling with an initial decrease in oxidative capacity, which was not counteracted by activation of signalling to increase mitochondrial biogenesis. This was followed by severe muscle weakness in the end stage. These results have implication for normal ageing and suggest that decreased mitochondrial oxidative capacity due to a sedentary lifestyle may predispose towards muscle weakness developing later in life.


Asunto(s)
Envejecimiento Prematuro/fisiopatología , Mitocondrias Musculares/fisiología , Fatiga Muscular/fisiología , Debilidad Muscular/fisiopatología , Músculo Esquelético/fisiopatología , Animales , Calcio/fisiología , ADN Mitocondrial/genética , Ratones , Ratones Mutantes , Especies Reactivas de Oxígeno/metabolismo , Retículo Sarcoplasmático/fisiología
16.
Age (Dordr) ; 34(6): 1435-52, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21989972

RESUMEN

Behavioral analysis is a high-end read-out of aging impact on an organism, and here, we have analyzed behaviors in 4-, 22-, and 28-month-old male C57BL/6J with a broad range of tests. For comparison, a group of 28-month-old males maintained on dietary restriction (DR) was included. The most conspicuous alteration was the decline in exploration activity with advancing age. Aging also affected other behaviors such as motor skill acquisition and grip strength, in contrast to latency to thermal stimuli and visual placement which were unchanged. Object recognition tests revealed intact working memory at 28 months while memory recollection was impaired already at 22 months. Comparison with female C57BL/6J (Fahlström et al., Neurobiol Aging 32:1868-1880, 2011) revealed that alterations in aged males and females are similar and that several of the behavioral indices correlate with age in both sexes. Moreover, we examined if behavioral indices in 22-month-old males could predict remaining life span as suggested in the study by Ingram and Reynolds (Exp Aging Res 12(3):155-162, 1986) and found that exploratory activity and motor skills accounted for up to 65% of the variance. Consistent with that a high level of exploratory activity and preserved motor capacity indicated a long post-test survival, 28-month-old males maintained on DR were more successful in such tests than ad libitum fed age-matched males. In summary, aged C57BL/6J males are marked by a reduced exploratory activity, an alteration that DR impedes. In light of recently published data, we discuss if a diminishing drive to explore may associate with aging-related impairment of central aminergic pathways.


Asunto(s)
Envejecimiento/fisiología , Conducta Animal/fisiología , Ingestión de Energía/fisiología , Privación de Alimentos/fisiología , Animales , Peso Corporal/fisiología , Conducta Exploratoria/fisiología , Femenino , Fuerza de la Mano/fisiología , Longevidad/fisiología , Masculino , Aprendizaje por Laberinto/fisiología , Recuerdo Mental/fisiología , Ratones , Ratones Endogámicos C57BL , Actividad Motora/fisiología , Destreza Motora/fisiología , Umbral del Dolor/fisiología , Reconocimiento Visual de Modelos/fisiología , Equilibrio Postural/fisiología , Tiempo de Reacción/fisiología , Factores Sexuales
17.
Neurobiol Aging ; 32(10): 1868-80, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-20005598

RESUMEN

Using a range of tests we have studied alterations in behavior with advancing age in female C57BL/6 (of Jackson origin), the golden standard on which most genetically engineered mice are back-crossed. In parallel, growth and survival data were collected. In a protected environment the 90% and 75% cohort survival age was 20 and 25 months, respectively, and the 50% cohort survival was 32 months. In mice, body weight increases continuously until 15-20 months of age, while in advanced age whole body weight drops. The body mass loss in senescence is associated with emergence of other aged phenotype features such as kyphosis, balding and loss of fur-color. Our behavioral data show that aging modulates certain aspects of basic behavior in a continuous manner, like explorative and locomotor activities. Advanced age associates with an acceleration of behavioral impairments evident in most of the tests used, including motor skill acquisition and memory consolidation. However, certain domains of mouse behavior were well preserved also in advanced age such as thermal noxious threshold and working memory as assessed by an object recognition task. The decreased drive to explore is suggested to be a key factor underlying many aspects of reduced performance including cognitive capacity during aging. Behavioral aging affects genetically closely related individuals housed under strictly standardized conditions differentially (Collier, T.J., Coleman, P.D., 1991. Divergence of biological and chronological aging: evidence from rodent studies. Neurobiol. Aging, 12, 685-693; Ingram, D.K., 1988. Motor performance variability during aging in rodents. Assessment of reliability and validity of individual differences. Ann. N.Y. Acad. Sci., 515, 70-96). Consistent with this a subpopulation of the 28-month-old mice showed an explorative activity similar to young-adult mice and a significantly stronger preference for a novel object than aged mice with a less explorative behavior. Thus, subtle environmental factors and epigenetic modifications may be important modulators of aging.


Asunto(s)
Envejecimiento/fisiología , Conducta Animal/fisiología , Ratones Endogámicos C57BL/fisiología , Factores de Edad , Análisis de Varianza , Animales , Peso Corporal , Conducta Exploratoria/fisiología , Femenino , Locomoción/fisiología , Aprendizaje por Laberinto/fisiología , Memoria a Corto Plazo/fisiología , Ratones , Fuerza Muscular/fisiología , Umbral del Dolor/fisiología , Desempeño Psicomotor/fisiología , Prueba de Desempeño de Rotación con Aceleración Constante
18.
J Biol Chem ; 285(51): 39597-608, 2010 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-20940294

RESUMEN

Among the hallmarks of aged organisms are an accumulation of misfolded proteins and a reduction in skeletal muscle mass ("sarcopenia"). We have examined the effects of aging and dietary restriction (which retards many age-related changes) on components of the ubiquitin proteasome system (UPS) in muscle. The hindlimb muscles of aged (30 months old) rats showed a marked loss of muscle mass and contained 2-3-fold higher levels of 26S proteasomes than those of adult (4 months old) controls. 26S proteasomes purified from muscles of aged and adult rats showed a similar capacity to degrade peptides, proteins, and an ubiquitylated substrate, but differed in levels of proteasome-associated proteins (e.g. the ubiquitin ligase E6AP and deubiquitylating enzyme USP14). Also, the activities of many other deubiquitylating enzymes were greatly enhanced in the aged muscles. Nevertheless, their content of polyubiquitylated proteins was higher than in adult animals. The aged muscles contained higher levels of the ubiquitin ligase CHIP, involved in eliminating misfolded proteins, and MuRF1, which ubiquitylates myofibrillar proteins. These muscles differed from ones rapidly atrophying due to disease, fasting, or disuse in that Atrogin-1/MAFbx expression was low and not inducible by glucocorticoids. Thus, the muscles of aged rats showed many adaptations indicating enhanced proteolysis by the UPS, which may enhance their capacity to eliminate misfolded proteins and seems to contribute to the sarcopenia. Accordingly, dietary restriction decreased or prevented the aging-associated increases in proteasomes and other UPS components and reduced muscle wasting.


Asunto(s)
Envejecimiento/metabolismo , Proteínas Musculares/metabolismo , Músculo Esquelético/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Ubiquitina/metabolismo , Ubiquitinación/fisiología , Animales , Masculino , Ratas , Ratas Sprague-Dawley , Proteínas Ligasas SKP Cullina F-box/metabolismo , Proteínas de Motivos Tripartitos , Ubiquitina-Proteína Ligasas/metabolismo
19.
Physiol Behav ; 92(5): 911-23, 2007 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-17675121

RESUMEN

Several disturbances occurring during aging of humans and rodents alike stem from changes in sensory and motor functions. Using a battery of behavioral tests we have studied alterations in performance with advancing age in female and male rats of some frequently used strains. In parallel, we collected survival and body weight data. The median survival age was similar for female and male Sprague-Dawley rats, inbred female Lewis and outbred male Wistar rats (29-30 months). In contrast, male Fisher 344 had a significantly shorter median life span. During aging there is a gradual decline in locomotor activity and explorative behavior while disturbances of coordination and balance first became evident at more advanced age. In old age, also weight carrying capacity, limb movement and temperature threshold were impaired. While whole body weight continues to increase over the better part of a rats' life span, the behavioral changes in old age associated with a decrease in both total body weight and muscle mass. Dietary restriction increases median life span expectancy; retards the pace of behavioral aging and impedes sarcopenia. Housing in enriched environment did not improve the scoring in the behavioral tests but tended to increase median life span. Finally, there was an agreement between behavioral data collected from longitudinal age-cohorts and those obtained from multiple age-cohorts.


Asunto(s)
Envejecimiento , Conducta Animal/fisiología , Síntomas Conductuales/fisiopatología , Factores de Edad , Análisis de Varianza , Animales , Conducta Exploratoria/fisiología , Femenino , Locomoción/fisiología , Masculino , Actividad Motora/fisiología , Dimensión del Dolor , Desempeño Psicomotor/fisiología , Ratas , Ratas Endogámicas F344 , Ratas Sprague-Dawley , Ratas Wistar , Tiempo de Reacción , Factores Sexuales , Especificidad de la Especie
20.
Physiol Behav ; 92(1-2): 129-35, 2007 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-17585972

RESUMEN

Motor disturbances and wasting of skeletal muscles (sarcopenia) causes significant impairment of daily life activities and is a major underlying cause for hospitalization in senescence. Herein we review data and present new findings on aging-specific changes in motoneurons, skeletal muscle and the interplay between motoneurons and target muscle fibers. Although many of the changes occurring during aging may be specific to motoneurons and myofibers, respectively, evidence indicates that myofiber regeneration in sarcopenic muscle is halted at the point where reinnervation is critical for the final differentiation into mature myofibers. Combined, evidence suggests that sarcopenia to a significant extent depend on a decreased capacity among motoneurons to innervate regenerating fibers. There are also conspicuous changes in the expression of several cytokines known to play important roles in establishing and maintaining neuromuscular connectivity during development and adulthood. We also present data showing the usefulness of rodent models in studies of successful and unsuccessful patterns of aging. Finally, we show that not only dietary restriction (DR) but also activity and social environment may modulate the pattern of aging.


Asunto(s)
Envejecimiento/fisiología , Neuronas Motoras/fisiología , Fibras Musculares Esqueléticas/fisiología , Músculo Esquelético/patología , Atrofia Muscular/fisiopatología , Envejecimiento/patología , Animales , Citocinas/metabolismo , Humanos , Péptidos y Proteínas de Señalización Intercelular/fisiología , Fibras Musculares Esqueléticas/patología , Músculo Esquelético/inervación , Atrofia Muscular/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...