Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38979192

RESUMEN

Impaired cerebral glucose metabolism is a pathologic feature of Alzheimer Disease (AD), and recent proteomic studies highlight a disruption of glial carbohydrate metabolism with disease progression. Here, we report that inhibition of indoleamine-2,3-dioxygenase 1 (IDO1), which metabolizes tryptophan to kynurenine (KYN) in the first step of the kynurenine pathway, rescues hippocampal memory function and plasticity in preclinical models of amyloid and tau pathology by restoring astrocytic metabolic support of neurons. Activation of IDO1 in astrocytes by amyloid-beta 42 and tau oligomers, two major pathological effectors in AD, increases KYN and suppresses glycolysis in an AhR-dependent manner. Conversely, pharmacological IDO1 inhibition restores glycolysis and lactate production. In amyloid-producing APP Swe -PS1 ΔE9 and 5XFAD mice and in tau-producing P301S mice, IDO1 inhibition restores spatial memory and improves hippocampal glucose metabolism by metabolomic and MALDI-MS analyses. IDO1 blockade also rescues hippocampal long-term potentiation (LTP) in a monocarboxylate transporter (MCT)-dependent manner, suggesting that IDO1 activity disrupts astrocytic metabolic support of neurons. Indeed, in vitro mass-labeling of human astrocytes demonstrates that IDO1 regulates astrocyte generation of lactate that is then taken up by human neurons. In co-cultures of astrocytes and neurons derived from AD subjects, deficient astrocyte lactate transfer to neurons was corrected by IDO1 inhibition, resulting in improved neuronal glucose metabolism. Thus, IDO1 activity disrupts astrocytic metabolic support of neurons across both amyloid and tau pathologies and in a model of AD iPSC-derived neurons. These findings also suggest that IDO1 inhibitors developed for adjunctive therapy in cancer could be repurposed for treatment of amyloid- and tau-mediated neurodegenerative diseases.

2.
bioRxiv ; 2023 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-37163077

RESUMEN

The sheer complexity of the brain has complicated our ability to understand its cellular mechanisms in health and disease. Genome-wide association studies have uncovered genetic variants associated with specific neurological phenotypes and diseases. In addition, single-cell transcriptomics have provided molecular descriptions of specific brain cell types and the changes they undergo during disease. Although these approaches provide a giant leap forward towards understanding how genetic variation can lead to functional changes in the brain, they do not establish molecular mechanisms. To address this need, we developed a 3D co-culture system termed iAssembloids (induced multi-lineage assembloids) that enables the rapid generation of homogenous neuron-glia spheroids. We characterize these iAssembloids with immunohistochemistry and single-cell transcriptomics and combine them with large-scale CRISPRi-based screens. In our first application, we ask how glial and neuronal cells interact to control neuronal death and survival. Our CRISPRi-based screens identified that GSK3ß inhibits the protective NRF2-mediated oxidative stress response in the presence of reactive oxygen species elicited by high neuronal activity, which was not previously found in 2D monoculture neuron screens. We also apply the platform to investigate the role of APOE-ε4, a risk variant for Alzheimer's Disease, in its effect on neuronal survival. This platform expands the toolbox for the unbiased identification of mechanisms of cell-cell interactions in brain health and disease.

3.
Stem Cell Reports ; 18(3): 706-719, 2023 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-36827976

RESUMEN

Loss of function (LoF) of TAR-DNA binding protein 43 (TDP-43) and mis-localization, together with TDP-43-positive and hyperphosphorylated inclusions, are found in post-mortem tissue of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) patients, including those carrying LoF variants in the progranulin gene (GRN). Modeling TDP-43 pathology has been challenging in vivo and in vitro. We present a three-dimensional induced pluripotent stem cell (iPSC)-derived paradigm-mature brain organoids (mbOrg)-composed of cortical-like-astrocytes (iA) and neurons. When devoid of GRN, mbOrgs spontaneously recapitulate TDP-43 mis-localization, hyperphosphorylation, and LoF phenotypes. Mixing and matching genotypes in mbOrgs showed that GRN-/- iA are drivers for TDP-43 pathology. Finally, we rescued TDP-43 LoF by adding exogenous progranulin, demonstrating a link between TDP-43 LoF and progranulin expression. In conclusion, we present an iPSC-derived platform that shows striking features of human TDP-43 proteinopathy and provides a tool for the mechanistic modeling of TDP-43 pathology and patient-tailored therapeutic screening for FTD and ALS.


Asunto(s)
Esclerosis Amiotrófica Lateral , Demencia Frontotemporal , Humanos , Esclerosis Amiotrófica Lateral/patología , Demencia Frontotemporal/genética , Granulinas/genética , Granulinas/metabolismo , Progranulinas/genética , Progranulinas/metabolismo , Astrocitos/metabolismo , Mutación , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Encéfalo/metabolismo
4.
J Clin Invest ; 133(6)2023 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-36602862

RESUMEN

Mutations in the human progranulin (GRN) gene are a leading cause of frontotemporal lobar degeneration (FTLD). While previous studies implicate aberrant microglial activation as a disease-driving factor in neurodegeneration in the thalamocortical circuit in Grn-/- mice, the exact mechanism for neurodegeneration in FTLD-GRN remains unclear. By performing comparative single-cell transcriptomics in the thalamus and frontal cortex of Grn-/- mice and patients with FTLD-GRN, we have uncovered a highly conserved astroglial pathology characterized by upregulation of gap junction protein GJA1, water channel AQP4, and lipid-binding protein APOE, and downregulation of glutamate transporter SLC1A2 that promoted profound synaptic degeneration across the two species. This astroglial toxicity could be recapitulated in mouse astrocyte-neuron cocultures and by transplanting induced pluripotent stem cell-derived astrocytes to cortical organoids, where progranulin-deficient astrocytes promoted synaptic degeneration, neuronal stress, and TDP-43 proteinopathy. Together, these results reveal a previously unappreciated astroglial pathology as a potential key mechanism in neurodegeneration in FTLD-GRN.


Asunto(s)
Demencia Frontotemporal , Degeneración Lobar Frontotemporal , Humanos , Animales , Ratones , Progranulinas/genética , Demencia Frontotemporal/genética , Astrocitos/metabolismo , Péptidos y Proteínas de Señalización Intercelular/genética , Mutación , Degeneración Lobar Frontotemporal/genética , Degeneración Lobar Frontotemporal/metabolismo , Degeneración Lobar Frontotemporal/patología
5.
Neuron ; 111(6): 857-873.e8, 2023 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-36640767

RESUMEN

Using machine learning (ML), we interrogated the function of all human-chimpanzee variants in 2,645 human accelerated regions (HARs), finding 43% of HARs have variants with large opposing effects on chromatin state and 14% on neurodevelopmental enhancer activity. This pattern, consistent with compensatory evolution, was confirmed using massively parallel reporter assays in chimpanzee and human neural progenitor cells. The species-specific enhancer activity of HARs was accurately predicted from the presence and absence of transcription factor footprints in each species. Despite these striking cis effects, activity of a given HAR sequence was nearly identical in human and chimpanzee cells. This suggests that HARs did not evolve to compensate for changes in the trans environment but instead altered their ability to bind factors present in both species. Thus, ML prioritized variants with functional effects on human neurodevelopment and revealed an unexpected reason why HARs may have evolved so rapidly.


Asunto(s)
Encéfalo , Elementos de Facilitación Genéticos , Pan troglodytes , Animales , Humanos , Cromatina , Aprendizaje Automático , Pan troglodytes/metabolismo , Factores de Transcripción/genética , Encéfalo/crecimiento & desarrollo
6.
Nat Neurosci ; 25(11): 1528-1542, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36303069

RESUMEN

Astrocytes become reactive in response to insults to the central nervous system by adopting context-specific cellular signatures and outputs, but a systematic understanding of the underlying molecular mechanisms is lacking. In this study, we developed CRISPR interference screening in human induced pluripotent stem cell-derived astrocytes coupled to single-cell transcriptomics to systematically interrogate cytokine-induced inflammatory astrocyte reactivity. We found that autocrine-paracrine IL-6 and interferon signaling downstream of canonical NF-κB activation drove two distinct inflammatory reactive signatures, one promoted by STAT3 and the other inhibited by STAT3. These signatures overlapped with those observed in other experimental contexts, including mouse models, and their markers were upregulated in human brains in Alzheimer's disease and hypoxic-ischemic encephalopathy. Furthermore, we validated that markers of these signatures were regulated by STAT3 in vivo using a mouse model of neuroinflammation. These results and the platform that we established have the potential to guide the development of therapeutics to selectively modulate different aspects of inflammatory astrocyte reactivity.


Asunto(s)
Enfermedad de Alzheimer , Células Madre Pluripotentes Inducidas , Humanos , Astrocitos , Transducción de Señal , Citocinas , Inflamación
7.
Nat Neurosci ; 25(5): 659-674, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35524141

RESUMEN

The mouse visual system serves as an accessible model to understand mammalian circuit wiring. Despite rich knowledge in retinal circuits, the long-range connectivity map from distinct retinal ganglion cell (RGC) types to diverse brain neuron types remains unknown. In this study, we developed an integrated approach, called Trans-Seq, to map RGCs to superior collicular (SC) circuits. Trans-Seq combines a fluorescent anterograde trans-synaptic tracer, consisting of codon-optimized wheat germ agglutinin fused to mCherry, with single-cell RNA sequencing. We used Trans-Seq to classify SC neuron types innervated by genetically defined RGC types and predicted a neuronal pair from αRGCs to Nephronectin-positive wide-field neurons (NPWFs). We validated this connection using genetic labeling, electrophysiology and retrograde tracing. We then used transcriptomic data from Trans-Seq to identify Nephronectin as a determinant for selective synaptic choice from αRGC to NPWFs via binding to Integrin α8ß1. The Trans-Seq approach can be broadly applied for post-synaptic circuit discovery from genetically defined pre-synaptic neurons.


Asunto(s)
Células Ganglionares de la Retina , Colículos Superiores , Animales , Proteínas de la Matriz Extracelular/genética , Proteínas de la Matriz Extracelular/metabolismo , Mamíferos/metabolismo , Ratones , Células Ganglionares de la Retina/fisiología , Colículos Superiores/fisiología , Sinapsis/fisiología
8.
Nat Commun ; 11(1): 4803, 2020 09 23.
Artículo en Inglés | MEDLINE | ID: mdl-32968068

RESUMEN

Meningiomas are the most common primary intracranial tumors, but the molecular drivers of meningioma tumorigenesis are poorly understood. We hypothesized that investigating intratumor heterogeneity in meningiomas would elucidate biologic drivers and reveal new targets for molecular therapy. To test this hypothesis, here we perform multiplatform molecular profiling of 86 spatially-distinct samples from 13 human meningiomas. Our data reveal that regional alterations in chromosome structure underlie clonal transcriptomic, epigenomic, and histopathologic signatures in meningioma. Stereotactic co-registration of sample coordinates to preoperative magnetic resonance images further suggest that high apparent diffusion coefficient (ADC) distinguishes meningioma regions with proliferating cells enriched for developmental gene expression programs. To understand the function of these genes in meningioma, we develop a human cerebral organoid model of meningioma and validate the high ADC marker genes CDH2 and PTPRZ1 as potential targets for meningioma therapy using live imaging, single cell RNA sequencing, CRISPR interference, and pharmacology.


Asunto(s)
Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Perfilación de la Expresión Génica/métodos , Heterogeneidad Genética , Imagen por Resonancia Magnética/métodos , Neoplasias Meníngeas/genética , Neoplasias Meníngeas/metabolismo , Anciano , Antígenos CD/genética , Neoplasias Encefálicas/diagnóstico por imagen , Neoplasias Encefálicas/patología , Cadherinas/genética , Imagen de Difusión por Resonancia Magnética/métodos , Epigenómica , Femenino , Marcadores Genéticos , Genómica , Humanos , Neoplasias Meníngeas/diagnóstico por imagen , Neoplasias Meníngeas/patología , Proteínas Tirosina Fosfatasas Clase 5 Similares a Receptores/genética , Transcriptoma
9.
Nature ; 588(7838): 459-465, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32866962

RESUMEN

Aberrant aggregation of the RNA-binding protein TDP-43 in neurons is a hallmark of frontotemporal lobar degeneration caused by haploinsufficiency in the gene encoding progranulin1,2. However, the mechanism leading to TDP-43 proteinopathy remains unclear. Here we use single-nucleus RNA sequencing to show that progranulin deficiency promotes microglial transition from a homeostatic to a disease-specific state that causes endolysosomal dysfunction and neurodegeneration in mice. These defects persist even when Grn-/- microglia are cultured ex vivo. In addition, single-nucleus RNA sequencing reveals selective loss of excitatory neurons at disease end-stage, which is characterized by prominent nuclear and cytoplasmic TDP-43 granules and nuclear pore defects. Remarkably, conditioned media from Grn-/- microglia are sufficient to promote TDP-43 granule formation, nuclear pore defects and cell death in excitatory neurons via the complement activation pathway. Consistent with these results, deletion of the genes encoding C1qa and C3 mitigates microglial toxicity and rescues TDP-43 proteinopathy and neurodegeneration. These results uncover previously unappreciated contributions of chronic microglial toxicity to TDP-43 proteinopathy during neurodegeneration.


Asunto(s)
Microglía/metabolismo , Microglía/patología , Neuronas/metabolismo , Neuronas/patología , Progranulinas/deficiencia , Proteinopatías TDP-43/metabolismo , Proteinopatías TDP-43/patología , Envejecimiento/genética , Envejecimiento/patología , Animales , Núcleo Celular/genética , Núcleo Celular/patología , Activación de Complemento/efectos de los fármacos , Activación de Complemento/inmunología , Complemento C1q/antagonistas & inhibidores , Complemento C1q/inmunología , Complemento C3b/antagonistas & inhibidores , Complemento C3b/inmunología , Medios de Cultivo Condicionados/química , Medios de Cultivo Condicionados/farmacología , Proteínas de Unión al ADN/metabolismo , Modelos Animales de Enfermedad , Femenino , Masculino , Ratones , Poro Nuclear/metabolismo , Poro Nuclear/patología , Progranulinas/genética , RNA-Seq , Análisis de la Célula Individual , Proteinopatías TDP-43/tratamiento farmacológico , Proteinopatías TDP-43/genética , Tálamo/metabolismo , Tálamo/patología , Transcriptoma
10.
Genome Biol ; 21(1): 83, 2020 03 31.
Artículo en Inglés | MEDLINE | ID: mdl-32234056

RESUMEN

BACKGROUND: Long non-coding RNAs (lncRNAs) exhibit highly cell type-specific expression and function, making this class of transcript attractive for targeted cancer therapy. However, the vast majority of lncRNAs have not been tested as potential therapeutic targets, particularly in the context of currently used cancer treatments. Malignant glioma is rapidly fatal, and ionizing radiation is part of the current standard-of-care used to slow tumor growth in both adult and pediatric patients. RESULTS: We use CRISPR interference (CRISPRi) to screen 5689 lncRNA loci in human glioblastoma (GBM) cells, identifying 467 hits that modify cell growth in the presence of clinically relevant doses of fractionated radiation. Thirty-three of these lncRNA hits sensitize cells to radiation, and based on their expression in adult and pediatric gliomas, nine of these hits are prioritized as lncRNA Glioma Radiation Sensitizers (lncGRS). Knockdown of lncGRS-1, a primate-conserved, nuclear-enriched lncRNA, inhibits the growth and proliferation of primary adult and pediatric glioma cells, but not the viability of normal brain cells. Using human brain organoids comprised of mature neural cell types as a three-dimensional tissue substrate to model the invasive growth of glioma, we find that antisense oligonucleotides targeting lncGRS-1 selectively decrease tumor growth and sensitize glioma cells to radiation therapy. CONCLUSIONS: These studies identify lncGRS-1 as a glioma-specific therapeutic target and establish a generalizable approach to rapidly identify novel therapeutic targets in the vast non-coding genome to enhance radiation therapy.


Asunto(s)
Neoplasias Encefálicas/terapia , Sistemas CRISPR-Cas , Glioblastoma/terapia , ARN Largo no Codificante/antagonistas & inhibidores , Adulto , Astrocitos , Encéfalo , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/radioterapia , Línea Celular Tumoral , Terapia Combinada , Glioblastoma/genética , Glioblastoma/patología , Glioblastoma/radioterapia , Humanos , Oligonucleótidos Antisentido , Organoides , Tolerancia a Radiación
11.
Nat Neurosci ; 23(4): 500-509, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32203496

RESUMEN

Although the cerebral cortex is organized into six excitatory neuronal layers, it is unclear whether glial cells show distinct layering. In the present study, we developed a high-content pipeline, the large-area spatial transcriptomic (LaST) map, which can quantify single-cell gene expression in situ. Screening 46 candidate genes for astrocyte diversity across the mouse cortex, we identified superficial, mid and deep astrocyte identities in gradient layer patterns that were distinct from those of neurons. Astrocyte layer features, established in the early postnatal cortex, mostly persisted in adult mouse and human cortex. Single-cell RNA sequencing and spatial reconstruction analysis further confirmed the presence of astrocyte layers in the adult cortex. Satb2 and Reeler mutations that shifted neuronal post-mitotic development were sufficient to alter glial layering, indicating an instructive role for neuronal cues. Finally, astrocyte layer patterns diverged between mouse cortical regions. These findings indicate that excitatory neurons and astrocytes are organized into distinct lineage-associated laminae.


Asunto(s)
Astrocitos/citología , Corteza Cerebral/citología , Neuronas/citología , Transcriptoma , Animales , Astrocitos/metabolismo , Mapeo Encefálico , Corteza Cerebral/metabolismo , Humanos , Ratones , Neuronas/metabolismo
12.
Glia ; 68(4): 685-704, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31926040

RESUMEN

Human astrocytes provide trophic as well as structural support to the surrounding brain cells. Furthermore, they have been implicated in many physiological processes important for central nervous system function. Traditionally astrocytes have been considered to be a homogeneous class of cells, however, it has increasingly become more evident that astrocytes can have very different characteristics in different regions of the brain, or even within the same region. In this review we will discuss the features of human astrocytes, their heterogeneity, and their generation during neurodevelopment and the extraordinary progress that has been made to model these fascinating cells in vitro, mainly from induced pluripotent stem cells. Astrocytes' role in disease will also be discussed with a particular focus on their role in neurodegenerative disorders. As outlined here, astrocytes are important for the homeostasis of the central nervous system and understanding their regional specificity is a priority to elucidate the complexity of the human brain.


Asunto(s)
Astrocitos/fisiología , Encéfalo/fisiología , Diferenciación Celular/fisiología , Enfermedades Neurodegenerativas/patología , Astrocitos/citología , Encéfalo/citología , Humanos
13.
Am J Hum Genet ; 104(5): 847-860, 2019 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-31051113

RESUMEN

Collagen type IV alpha 1 and alpha 2 chains form heterotrimers ([α1(IV)]2α2(IV)) that represent a fundamental basement membrane constituent. Dominant COL4A1 and COL4A2 mutations cause a multisystem disorder that is marked by clinical heterogeneity and variable expressivity and that is generally characterized by the presence of cerebrovascular disease with ocular, renal, and muscular involvement. Despite the fact that muscle pathology is reported in up to one-third of individuals with COL4A1 and COL4A2 mutations and in animal models with mutations in COL4A1 and COL4A2 orthologs, the pathophysiological mechanisms underlying COL4A1-related myopathy are unknown. In general, mutations are thought to impair [α1(IV)]2α2(IV) secretion. Whether pathogenesis results from intracellular retention, extracellular deficiency, or the presence of mutant proteins in basement membranes represents an important gap in knowledge and a major obstacle for developing targeted interventions. We report that Col4a1 mutant mice develop progressive neuromuscular pathology that models human disease. We demonstrate that independent muscular, neural, and vascular insults contribute to neuromyopathy and that there is mechanistic heterogeneity among tissues. Importantly, we provide evidence of a COL4A1 functional subdomain with disproportionate significance for tissue-specific pathology and demonstrate that a potential therapeutic strategy aimed at promoting [α1(IV)]2α2(IV) secretion can ameliorate or exacerbate myopathy in a mutation-dependent manner. These data have important translational implications for prediction of clinical outcomes based on genotype, development of mechanism-based interventions, and genetic stratification for clinical trials. Collectively, our data underscore the importance of the [α1(IV)]2α2(IV) network as a multifunctional signaling platform and show that allelic and tissue-specific mechanistic heterogeneities contribute to the variable expressivity of COL4A1 and COL4A2 mutations.


Asunto(s)
Colágeno Tipo IV/genética , Enfermedades Musculares/etiología , Mutación , Enfermedades Neuromusculares/etiología , Animales , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Enfermedades Musculares/patología , Enfermedades Neuromusculares/patología , Especificidad de Órganos , Fenotipo
14.
Am J Med Genet A ; 176(12): 2924-2929, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30302932

RESUMEN

This report summarizes and highlights the fifth International RASopathies Symposium: When Development and Cancer Intersect, held in Orlando, Florida in July 2017. The RASopathies comprise a recognizable pattern of malformation syndromes that are caused by germ line mutations in genes that encode components of the RAS/mitogen-activated protein kinase (MAPK) pathway. Because of their common underlying pathogenetic etiology, there is significant overlap in their phenotypic features, which includes craniofacial dysmorphology, cardiac, cutaneous, musculoskeletal, gastrointestinal and ocular abnormalities, neurological and neurocognitive issues, and a predisposition to cancer. The RAS pathway is a well-known oncogenic pathway that is commonly found to be activated in somatic malignancies. As in somatic cancers, the RASopathies can be caused by various pathogenetic mechanisms that ultimately impact or alter the normal function and regulation of the MAPK pathway. As such, the RASopathies represent an excellent model of study to explore the intersection of the effects of dysregulation and its consequence in both development and oncogenesis.


Asunto(s)
Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Proteínas ras/genética , Animales , Regulación de la Expresión Génica , Estudios de Asociación Genética/métodos , Desarrollo Humano , Humanos , Modelos Biológicos , Terapia Molecular Dirigida , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patología , Organogénesis/genética , Transducción de Señal , Síndrome , Proteínas ras/metabolismo
15.
Neuron ; 98(2): 306-319.e7, 2018 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-29606582

RESUMEN

Diversified neurons are essential for sensorimotor function, but whether astrocytes become specialized to optimize circuit performance remains unclear. Large fast α-motor neurons (FαMNs) of spinal cord innervate fast-twitch muscles that generate peak strength. We report that ventral horn astrocytes express the inward-rectifying K+ channel Kir4.1 (a.k.a. Kcnj10) around MNs in a VGLUT1-dependent manner. Loss of astrocyte-encoded Kir4.1 selectively altered FαMN size and function and led to reduced peak strength. Overexpression of Kir4.1 in astrocytes was sufficient to increase MN size through activation of the PI3K/mTOR/pS6 pathway. Kir4.1 was downregulated cell autonomously in astrocytes derived from amyotrophic lateral sclerosis (ALS) patients with SOD1 mutation. However, astrocyte Kir4.1 was dispensable for FαMN survival even in the mutant SOD1 background. These findings show that astrocyte Kir4.1 is essential for maintenance of peak strength and suggest that Kir4.1 downregulation might uncouple symptoms of muscle weakness from MN cell death in diseases like ALS.


Asunto(s)
Astrocitos/metabolismo , Neuronas Motoras/metabolismo , Canales de Potasio de Rectificación Interna/biosíntesis , Esclerosis Amiotrófica Lateral/metabolismo , Esclerosis Amiotrófica Lateral/patología , Animales , Animales Recién Nacidos , Astrocitos/química , Astrocitos/patología , Células Cultivadas , Femenino , Humanos , Células Madre Pluripotentes Inducidas/química , Células Madre Pluripotentes Inducidas/metabolismo , Masculino , Ratones , Ratones Transgénicos , Neuronas Motoras/química , Neuronas Motoras/patología , Técnicas de Cultivo de Órganos , Canales de Potasio de Rectificación Interna/análisis
16.
Brain ; 141(1): 85-98, 2018 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-29244098

RESUMEN

Hypoxia can injure brain white matter tracts, comprised of axons and myelinating oligodendrocytes, leading to cerebral palsy in neonates and delayed post-hypoxic leukoencephalopathy (DPHL) in adults. In these conditions, white matter injury can be followed by myelin regeneration, but myelination often fails and is a significant contributor to fixed demyelinated lesions, with ensuing permanent neurological injury. Non-myelinating oligodendrocyte precursor cells are often found in lesions in plentiful numbers, but fail to mature, suggesting oligodendrocyte precursor cell differentiation arrest as a critical contributor to failed myelination in hypoxia. We report a case of an adult patient who developed the rare condition DPHL and made a nearly complete recovery in the setting of treatment with clemastine, a widely available antihistamine that in preclinical models promotes oligodendrocyte precursor cell differentiation. This suggested possible therapeutic benefit in the more clinically prevalent hypoxic injury of newborns, and we demonstrate in murine neonatal hypoxic injury that clemastine dramatically promotes oligodendrocyte precursor cell differentiation, myelination, and improves functional recovery. We show that its effect in hypoxia is oligodendroglial specific via an effect on the M1 muscarinic receptor on oligodendrocyte precursor cells. We propose clemastine as a potential therapy for hypoxic brain injuries associated with white matter injury and oligodendrocyte precursor cell maturation arrest.


Asunto(s)
Clemastina/uso terapéutico , Enfermedades Desmielinizantes/tratamiento farmacológico , Enfermedades Desmielinizantes/etiología , Antagonistas de los Receptores Histamínicos H1/uso terapéutico , Hipoxia Encefálica/complicaciones , Recuperación de la Función/efectos de los fármacos , Potenciales de Acción/efectos de los fármacos , Animales , Animales Recién Nacidos , Diferenciación Celular/efectos de los fármacos , Células Cultivadas , Cerebelo/efectos de los fármacos , Cerebelo/metabolismo , Cerebelo/ultraestructura , Enfermedades Desmielinizantes/diagnóstico por imagen , Enfermedades Desmielinizantes/patología , Modelos Animales de Enfermedad , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Humanos , Hipoxia Encefálica/diagnóstico por imagen , Masculino , Ratones , Ratones Noqueados , Persona de Mediana Edad , Vaina de Mielina/efectos de los fármacos , Vaina de Mielina/ultraestructura , Células Precursoras de Oligodendrocitos/efectos de los fármacos , Nervio Óptico/fisiopatología , Oxígeno/farmacología , Receptor Muscarínico M1/genética , Receptor Muscarínico M1/metabolismo
17.
Stem Cell Reports ; 9(6): 1745-1753, 2017 12 12.
Artículo en Inglés | MEDLINE | ID: mdl-29198827

RESUMEN

Human astrocytes network with neurons in dynamic ways that are still poorly defined. Our ability to model this relationship is hampered by the lack of relevant and convenient tools to recapitulate this complex interaction. To address this barrier, we have devised efficient coculture systems utilizing 3D organoid-like spheres, termed asteroids, containing pre-differentiated human pluripotent stem cell (hPSC)-derived astrocytes (hAstros) combined with neurons generated from hPSC-derived neural stem cells (hNeurons) or directly induced via Neurogenin 2 overexpression (iNeurons). Our systematic methods rapidly produce structurally complex hAstros and synapses in high-density coculture with iNeurons in precise numbers, allowing for improved studies of neural circuit function, disease modeling, and drug screening. We conclude that these bioengineered neural circuit model systems are reliable and scalable tools to accurately study aspects of human astrocyte-neuron functional properties while being easily accessible for cell-type-specific manipulations and observations.


Asunto(s)
Astrocitos/citología , Diferenciación Celular/genética , Técnicas de Cocultivo , Neuronas/citología , Astrocitos/metabolismo , Linaje de la Célula/genética , Linaje de la Célula/fisiología , Células Cultivadas , Humanos , Células-Madre Neurales/citología , Células-Madre Neurales/metabolismo , Neuronas/metabolismo , Células Madre Pluripotentes/citología , Células Madre Pluripotentes/metabolismo , Sinapsis/metabolismo , Sinapsis/fisiología
18.
Cell Rep ; 21(10): 2678-2687, 2017 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-29212016

RESUMEN

A deletion or duplication in the 16p11.2 region is associated with neurodevelopmental disorders, including autism spectrum disorder and schizophrenia. In addition to clinical characteristics, carriers of the 16p11.2 copy-number variant (CNV) manifest opposing neuroanatomical phenotypes-e.g., macrocephaly in deletion carriers (16pdel) and microcephaly in duplication carriers (16pdup). Using fibroblasts obtained from 16pdel and 16pdup carriers, we generated induced pluripotent stem cells (iPSCs) and differentiated them into neurons to identify causal cellular mechanisms underlying neurobiological phenotypes. Our study revealed increased soma size and dendrite length in 16pdel neurons and reduced neuronal size and dendrite length in 16pdup neurons. The functional properties of iPSC-derived neurons corroborated aspects of these contrasting morphological differences that may underlie brain size. Interestingly, both 16pdel and 16pdup neurons displayed reduced synaptic density, suggesting that distinct mechanisms may underlie brain size and neuronal connectivity at this locus.


Asunto(s)
Trastorno del Espectro Autista/metabolismo , Trastorno Autístico/metabolismo , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/metabolismo , Neuronas/citología , Neuronas/metabolismo , Trastorno del Espectro Autista/genética , Trastorno Autístico/genética , Diferenciación Celular/genética , Diferenciación Celular/fisiología , Deleción Cromosómica , Duplicación Cromosómica/genética , Cromosomas Humanos Par 16/genética , Variaciones en el Número de Copia de ADN/genética , Humanos , Megalencefalia/genética , Megalencefalia/metabolismo , Microcefalia/genética , Microcefalia/metabolismo , Modelos Genéticos
19.
J Exp Med ; 214(12): 3481-3495, 2017 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-29141869

RESUMEN

Prions are infectious agents that cause neurodegenerative diseases such as Creutzfeldt-Jakob disease (CJD). The absence of a human cell culture model that replicates human prions has hampered prion disease research for decades. In this paper, we show that astrocytes derived from human induced pluripotent stem cells (iPSCs) support the replication of prions from brain samples of CJD patients. For experimental exposure of astrocytes to variant CJD (vCJD), the kinetics of prion replication occur in a prion protein codon 129 genotype-dependent manner, reflecting the genotype-dependent susceptibility to clinical vCJD found in patients. Furthermore, iPSC-derived astrocytes can replicate prions associated with the major sporadic CJD strains found in human patients. Lastly, we demonstrate the subpassage of prions from infected to naive astrocyte cultures, indicating the generation of prion infectivity in vitro. Our study addresses a long-standing gap in the repertoire of human prion disease research, providing a new in vitro system for accelerated mechanistic studies and drug discovery.


Asunto(s)
Astrocitos/metabolismo , Células Madre Pluripotentes Inducidas/citología , Proteínas Priónicas/genética , Priones/metabolismo , Adulto , Células Cultivadas , Codón/genética , Síndrome de Creutzfeldt-Jakob/patología , Femenino , Genotipo , Humanos , Cinética , Masculino , Persona de Mediana Edad , Adulto Joven
20.
Brain Res Bull ; 129: 66-73, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-27570101

RESUMEN

Cellular components of synaptic circuits have been adjusted for increased human brain size, neural cell density, energy consumption and developmental duration. How does the human brain make these accommodations? There is evidence that astrocytes are one of the most divergent neural cell types in primate brain evolution and it is now becoming clear that they have critical roles in controlling synaptic development, function and plasticity. Yet, we still do not know how the precise developmental appearance of these cells and subsequent astrocyte-derived signals modulate diverse neuronal circuit subtypes. Here, we discuss what is currently known about the influence of glial factors on synaptic maturation and focus on unique features of human astrocytes including their potential roles in regenerative and translational medicine. Human astrocyte distinctiveness may be a major contributor to high level neuronal processing of the human brain and act in novel ways during various neuropathies ranging from autism spectrum disorders, viral infection, injury and neurodegenerative conditions.


Asunto(s)
Astrocitos/fisiología , Sinapsis/fisiología , Animales , Encéfalo/fisiología , Humanos , Neurogénesis/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...