Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Environ Monit Assess ; 196(6): 572, 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38777911

RESUMEN

This study analyzes arthropod biomass and abundance to track the changes in arthropod occurrence in relation to pesticide use in three winter wheat cropping systems managed at different intensities (organic, conventional, and hybrid). Arthropod occurrence was surveyed using three collection tools: sweeping nets, eclector traps, and yellow traps. Sampling was conducted over three years from 2020 to 2022 with 588 samples collected. The wet weight of the captured organisms was determined and arthropod abundance calculated. The application of a NOcsPS (no chemical-synthetic pesticides) strategy, a new hybrid cultivation method realized with optimized use of nitrogen fertilizers but without chemical-synthetic pesticides, showed a higher arthropod occurrence and performed more convincingly regarding produced arthropod biomass and abundance than the other cropping variants. The results also demonstrate a dependence of the obtained insect indices on the collection method. Although arthropod biomass and abundance correlated for all collection methods, the combination of various methods as well as multiple procedures of sample analysis gives a more realistic and comprehensive view of the impact of the wheat cultivation systems on the arthropod fauna than one-factor analyses.


Asunto(s)
Artrópodos , Monitoreo del Ambiente , Fertilizantes , Nitrógeno , Triticum , Triticum/crecimiento & desarrollo , Animales , Nitrógeno/análisis , Monitoreo del Ambiente/métodos , Agricultura/métodos , Plaguicidas/análisis , Control de Plagas/métodos , Biomasa
2.
Fitoterapia ; 170: 105660, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37648031

RESUMEN

Due to their content of phenolic compounds, willow bark preparations are used as an herbal remedy. The large diversity of phenolic secondary metabolites in Salix still provides a resource for the identification of bioactive compounds in particular species, including species not yet in focus from a phytopharmaceutical perspective. The present study describes the bark phenolic profile of 13 Salix species analyzed by HPLC-MS: Salix alba, Salix babylonica, Salix daphnoides, Salix fragilis, Salix hastata, Salix myrsinifolia, Salix pentandra, Salix purpurea, Salix repens (including subspecies S. repens ssp. arenaria and S. repens ssp. repens), Salix rosmarinifolia, Salix sachalinensis, Salix triandra and Salix viminalis. The analyzed profiles comprised the chemical groups of salicylates, flavonoids, procyanidins, phenolic acid derivatives, and some unclassified phenolics. Particular compounds were detected in species where they have not been previously reported. Apart from interspecific diversity, qualitative variability within species was observed as certain components were detected only in some of the analyzed genotypes. The knowledge on specific phenolic profiles of species and genotypes is the basis for the selection of suitable willow bark material with certain desired bioactive properties. Furthermore, the high inter- and intraspecific variability points out the necessity for product standardization of willow bark raw material.

3.
Insects ; 14(3)2023 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-36975951

RESUMEN

The growth and nutritional profile of the black soldier fly larvae (BSFL) is usually investigated and compared when the larvae feed on substrates that differ in the chemical composition as well as physical properties. This study compares BSFL growth on substrates that differ primarily in physical properties. This was achieved by using various fibres in the substrates. In the first experiment, two substrates with 20% or 14% chicken feed were mixed with three fibres (cellulose, lignocellulose, or straw). In the second experiment, the growth of BSFL was compared with a 17% chicken feed substrate that additionally contained straw with different particle sizes. We show that the substrate texture properties values did not influence the BSFL growth, but the bulk density of the fibre component did. The substrate mixed with cellulose led to higher larvae growth over time in comparison to substrates with higher bulk density fibres. BSFL grown on the substrate mixed with cellulose reached their maximum weight in 6 days instead of 7. Neither the fibres nor the nutrient level changed the crude protein content of BSFL and the values ranged between 33.5% and 38.3%, but an interaction between the fibre and nutrient level was observed. The size of straw particles in the substrates influenced the BSFL growth and led to a 26.78% difference in Ca concentration, a 12.04% difference in Mg concentration, and a 35.34% difference in P concentration. Our findings indicate that the BSFL-rearing substrates can be optimised by changing the fibre component or its particle size. This can improve the survival rate, reduce the cultivation time needed to reach the maximum weight, and alter the chemical composition of BSFL.

4.
Insects ; 14(2)2023 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-36835752

RESUMEN

The proper treatment of cannabis agricultural wastes can reduce the environmental impact of its cultivation and generate valuable products. This study aimed to test the potential of cannabis agricultural wastes as a substrate for the rearing of black soldier fly larvae (BSFL) and yellow mealworms (MW). In the case of BSFL, replacing the fibre component (straw) in the substrate with the hemp waste can increase the nutritional value of the substrate and led to bigger larvae. The bigger larvae had lower P and Mg, and higher Fe and Ca. Crude protein also varied based on the size of larvae and/or the content of protein in the initial substrate, which was boosted by replacing straw with hemp material. No other cannabinoids than cannabidiolic acid (CBDA), cannabigerolic acid (CBGA), and cannabidiol (CBD) were found in significant amounts in the larvae. In the case of MW, the larvae grew less on the hemp material in comparison to wheat bran. Replacing wheat bran with the hemp material led to smaller larvae with higher Ca, Fe, K, and crude protein content, but lower Mg and P values. No cannabinoids were detected in the MW fed with the hemp material.

5.
Int J Mol Sci ; 22(20)2021 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-34681798

RESUMEN

Salix cortex-containing medicine is used against pain conditions, fever, headaches, and inflammation, which are partly mediated via arachidonic acid-derived prostaglandins (PGs). We used an activity-guided fractionation strategy, followed by structure elucidation experiments using LC-MS/MS, CD-spectroscopy, and 1D/2D NMR techniques, to identify the compounds relevant for the inhibition of PGE2 release from activated human peripheral blood mononuclear cells. Subsequent compound purification by means of preparative and semipreparative HPLC revealed 2'-O-acetylsalicortin (1), 3'-O-acetylsalicortin (2), 2'-O-acetylsalicin (3), 2',6'-O-diacetylsalicortin (4), lasiandrin (5), tremulacin (6), and cinnamrutinose A (7). In contrast to 3 and 7, compounds 1, 2, 4, 5, and 6 showed inhibitory activity against PGE2 release with different potencies. Polyphenols were not relevant for the bioactivity of the Salix extract but salicylates, which degrade to, e.g., catechol, salicylic acid, salicin, and/or 1-hydroxy-6-oxo-2-cycohexenecarboxylate. Inflammation presents an important therapeutic target for pharmacological interventions; thus, the identification of relevant key drugs in Salix could provide new prospects for the improvement and standardization of existing clinical medicine.


Asunto(s)
Inflamación/tratamiento farmacológico , Salicilatos/aislamiento & purificación , Salix/química , Antiinflamatorios/aislamiento & purificación , Antiinflamatorios/farmacología , Células Cultivadas , Cromatografía Liquida , Dinoprostona/metabolismo , Humanos , Leucocitos Mononucleares/efectos de los fármacos , Leucocitos Mononucleares/metabolismo , Terapia Molecular Dirigida/métodos , Terapia Molecular Dirigida/tendencias , Dolor/tratamiento farmacológico , Fitoterapia/métodos , Corteza de la Planta/química , Extractos Vegetales/química , Extractos Vegetales/aislamiento & purificación , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Salicilatos/análisis , Salicilatos/farmacología , Espectrometría de Masas en Tándem
6.
Int J Mol Sci ; 22(13)2021 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-34201817

RESUMEN

The usefulness of anti-inflammatory drugs as an adjunct therapy to improve outcomes in COVID-19 patients is intensely discussed in this paper. Willow bark (Salix cortex) has been used for centuries to relieve pain, inflammation, and fever. Its main active ingredient, salicin, is metabolized in the human body into salicylic acid, the precursor of the commonly used pain drug acetylsalicylic acid (ASA). Here, we report on the in vitro anti-inflammatory efficacy of two methanolic Salix extracts, standardized to phenolic compounds, in comparison to ASA in the context of a SARS-CoV-2 peptide challenge. Using SARS-CoV-2 peptide/IL-1ß- or LPS-activated human PBMCs and an inflammatory intestinal Caco-2/HT29-MTX co-culture, Salix extracts, and ASA concentration-dependently suppressed prostaglandin E2 (PGE2), a principal mediator of inflammation. The inhibition of COX-2 enzyme activity, but not protein expression was observed for ASA and one Salix extract. In activated PBMCs, the suppression of relevant cytokines (i.e., IL-6, IL-1ß, and IL-10) was seen for both Salix extracts. The anti-inflammatory capacity of Salix extracts was still retained after transepithelial passage and liver cell metabolism in an advanced co-culture model system consisting of intestinal Caco-2/HT29-MTX cells and differentiated hepatocyte-like HepaRG cells. Taken together, our in vitro data suggest that Salix extracts might present an additional anti-inflammatory treatment option in the context of SARS-CoV-2 peptides challenge; however, more confirmatory data are needed.


Asunto(s)
Antiinflamatorios/farmacología , Aspirina/farmacología , Tratamiento Farmacológico de COVID-19 , COVID-19/inmunología , Extractos Vegetales/farmacología , Antiinflamatorios/química , Alcoholes Bencílicos/metabolismo , COVID-19/virología , Células CACO-2 , Ciclooxigenasa 2/efectos de los fármacos , Citocinas/metabolismo , Dinoprostona/metabolismo , Glucósidos/metabolismo , Células HT29 , Humanos , Inflamación , Leucocitos Mononucleares/efectos de los fármacos , Lipopolisacáridos/inmunología , Corteza de la Planta/química , Extractos Vegetales/química , SARS-CoV-2/inmunología
7.
Front Plant Sci ; 12: 579820, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33868322

RESUMEN

Willow bark is traditionally used for pharmaceutical purposes. Evaluation is so far based on the salicylate content, however, health promoting effects of extracts might be attributed to the interaction of those salicylates with other compounds, which support and complement their action. So far, only S. purpurea, S. daphnoides, and S. fragilis are included in pharmaceutical extracts. Crossing with other species could result in a more diverse secondary metabolite profile with higher pharmacological value. With the help of targeted inter- and intraspecific crossing, new chemotypes were generated, whereby nine different Salix genotypes (S. alba, S. daphnoides, S. humboldtiana, S. lasiandra, S. nigra, S. pentandra, S. purpurea, S. x rubens, S. viminalis) were included in the study. Based on substances known for their health promoting potential and characteristic for Salix (selected phenolic compounds including salicylates), a targeted metabolomics analysis and clustering of 92 generated Salix clones was performed revealing four different cluster/chemoprofiles. In more specific, one group is formed by S. daphnoides clones and inter- and intraspecific hybrids, a second group by S. viminalis clones and inter- and intraspecific hybrids, a third group generally formed by S. alba, S. pentandra, S. x rubens, and S. lasiandra clones and hybrids, and a fourth group by S. purpurea clones and inter- and intraspecific hybrids. Clustering on the basis of the selected phenolic compounds can be used for identifying Salix clones with a different compound profile. New combinations of secondary plant metabolites offer the chance to identify Salix crosses with improved effects on human health.

8.
Plant Environ Interact ; 2(1): 36-44, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37283845

RESUMEN

Onset of salinity induces the pH of the leaf apoplast of Pak choi transiently to increase over a period of 2 to 3 hr. This pH event causes protein abundances in leaves to increase. Among them are enzymes that are key for the phenylpropanoid pathway. To answer the questions whether this short-term salt stress also influences contents of the underlying phenylpropanoids and for clarifying as to whether the apoplastic pH transient plays a role for such a putative effect, Pak choi plants were treated with 37.5 mM CaCl2 against a non-stressed control. A third experimental group, where the leaf apoplast of plants treated with 37.5 mM CaCl2, was clamped in the acidic range by means of infiltration of 5 mM citric acid/sodium citrate (pH 3.6), enabled validation of pH-dependent effects. Microscopy-based live cell imaging was used to quantify leaf apoplastic pH in planta. Phenolics were quantified shortly after the formation of the leaf apoplastic pH transient by means of HPLC-DAD-ESI-MS. Results showed that different phenolic compounds were modulated at 150 and 200 min after the onset of chloride salinity. A pH-independent reduction in phenolic acid abundance as well as an accumulation of phenolic acid:malate conjugates was quantified after 200 min of salt stress. However, at 150 min after the onset of salt stress, flavonoids were significantly reduced by salinity in a pH-dependent manner. These results provided a strong indication that the pH of the apoplast is a relevant component for the short-term metabolic response to chloride salinity.

9.
Exp Appl Acarol ; 82(2): 243-254, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32897464

RESUMEN

Four silica-based acaricides were examined in laboratory tests for their effectiveness against poultry red mite, Dermanyssus gallinae. All acaricides resulted in 100% mite mortality. Two groups of active ingredients could be differentiated. The products Silicosec® and Ewazid®, based on naturally occurring diatomaceous earth (DE), killed 100% of adult D. gallinae within 48 h exposure time. The time to kill 50% of the mites (LT50) was calculated to be 31.7 and 34.9 h, respectively. The other two products, containing aggregates and agglomerates of pyrogenic synthetic amorphous silicon dioxide as active ingredients, killed the mites in a significantly shorter time: LT50 was 6.3 h for the liquid product Fossil Shield® Instant White and 11.8 h for the powdery product Fossil Shield 90.0 White. This is more remarkable as the quantities of active ingredients used for the DE treatments were several folds higher. The effectiveness of all tested products was also shown in practical tests. A professional company treated five chicken houses on one farm in the Berlin-Brandenburg region with the test products, three houses with Fossil Shield Instant White and one each with Ewazid and Silicosec. Over a period of 46 weeks after stocking, the mite development in the houses was assessed. Only in one of the houses, treated with Fossil Shield Instant White, the mite population remained permanently low. In two houses treated with Fossil Shield Instant White, small mite colonies appeared in week 36, which were controlled by a follow-up spot treatment in week 41. In the houses treated with DE, the first mite colonies appeared 12 weeks after stocking. The number increased continuously over the experimental period and in week 31 after stocking there were clearly visible colonies (2-3 cm diameter) and the first mites could also be detected on the chicken eggs. At this time both houses were treated again with a follow-up spot-treatment, which only led to a slight improvement in one house and to a stabilization of the infestation in the other house. In week 41, large mite colonies were detected in both houses. A spot treatment at this point was ineffective in reducing the infestation. The tests showed faster acaricidal action of the products with the synthetic active ingredients compared to the natural DE-based products. This matches the shorter killing times under laboratory conditions. The experiments in a commercial chicken farm showed that it is possible to control the mite population for a period of 46 weeks by using physically effective SiO2-based products. These products are therefore an effective alternative to the use of chemical acaricides.


Asunto(s)
Acaricidas , Infestaciones por Ácaros/veterinaria , Ácaros , Enfermedades de las Aves de Corral/prevención & control , Dióxido de Silicio , Animales , Pollos/parasitología , Infestaciones por Ácaros/prevención & control , Aves de Corral/parasitología , Enfermedades de las Aves de Corral/parasitología
10.
Plant Physiol Biochem ; 155: 311-320, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32798899

RESUMEN

The bark of willows (Salix spp.) is rich in bioactive phenolic compounds from different compound classes and is therefore used as an herbal remedy. The accumulation of these secondary plant metabolites is influenced by environmental factors, including the availability of water. To analyze the influence of drought stress on the profile of phenolic metabolites in willow bark, a pot experiment with Salix daphnoides Vill. and Salix purpurea L. was conducted. Plants were subjected to three irrigation treatments for four and ten weeks: 65-75% field capacity (well-watered), 33-38% field capacity (moderate drought), and 17-22% field capacity (severe drought). Shoot biomass and proline content were assessed as drought-sensitive traits. Contents of phenolic compounds were analyzed by high-performance liquid chromatography. Drought stress reduced shoot biomass and led to an increase of the bark proline content. The particular effects on phenolics depended on the individual compound, Salix species and drought stress duration. Whereas salicylates were not affected, some flavonoids and phenolic acid derivatives, as well as salireposide indicated treatment effects. The effects comprised decreasing as well as increasing contents. However, beyond the impact of drought stress, the observed responses are assumed to be superimposed by seasonal changes in the content of phenolics. Regarding the yield of willow shoots, the impairment of growth under water shortage seems to be more decisive than drought-induced changes of the bark metabolite content.


Asunto(s)
Sequías , Fenoles/metabolismo , Corteza de la Planta/metabolismo , Salix/metabolismo , Estrés Fisiológico , Cromatografía Líquida de Alta Presión , Salix/clasificación
11.
Plants (Basel) ; 9(5)2020 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-32423048

RESUMEN

One of the most vital environmental factors that restricts plant production in arid and semi-arid environments is the lack of fresh water and drought stress. Common bean (Phaseolus vulgaris L.) productivity is severely limited by abiotic stress, especially climate-related constraints. Therefore, a field experiment in split-plot design was carried out to examine the potential function of ascorbic acid (AsA) in mitigating the adverse effects of water stress on common bean. The experiment included two irrigation regimes (100% or 50% of crop evapotranspiration) and three AsA doses (0, 200, or 400 mg L-1 AsA). The results revealed that water stress reduced common bean photosynthetic pigments (chlorophyll and carotenoids), carbonic anhydrase activity, antioxidant activities (2,2-diphenyl-1-picrylhydrazyl free radical activity scavenging activity and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) radical cation assay), growth and seed yield, while increased enzymatic antioxidants (peroxidase), secondary metabolites (phenolic, flavonoids, and tannins), malondialdehyde (MDA), and crop water productivity. In contrast, the AsA foliar spray enhanced all studied traits and the enhancement was gradual with the increasing AsA dose. The linear regression model predicted that when the AsA dose increase by 1.0 mg L-1, the seed yield is expected to increase by 0.06 g m-2. Enhanced water stress tolerance through adequate ascorbic acid application is a promising strategy to increase the tolerance and productivity of common bean under water stress. Moreover, the response of common bean to water deficit appears to be dependent on AsA dose.

12.
J Fungi (Basel) ; 6(2)2020 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-32403358

RESUMEN

Cowpea aphid, Aphis craccivora, is a major cowpea pest. Cowpea-cereal intercrop alone does not effectively manage the pest. Use of pesticides in intercrop leads to health and environmental risks. Fungal-based biopesticides offer a better option because they are environment- and consumer-friendly. This study assessed the combined effect of Metarhizium anisopliae ICIPE 62 and cowpea-maize intercrop against A. craccivora under six treatments: (1) untreated cowpea monocrop, (2) untreated cowpea-maize intercrop, (3) cowpea monocrop + ICIPE 62, (4) cowpea-maize intercrop + ICIPE 62, (5) cowpea monocrop + Duduthrin insecticide, and (6) cowpea-maize intercrop + Duduthrin during three seasons (long rainy/cold and dry/short rainy). In the cold and dry season, cowpea-maize intercrop treated with ICIPE 62 recorded the lowest infestation/cowpea damage, whereas the leaf yield was comparable to cowpea monocrop treated with ICIPE 62. In the short rainy season, the cowpea-maize intercrop treated with ICIPE 62 recorded the lowest infestation/damage, whereas leaf yield was similar to cowpea-maize intercrop treated with ICIPE 62 in the cold and dry season. Duduthrin in monocrop and intercrop did not reduce aphid infestation/cowpea damage levels in all the seasons. Although the efficacy of M. anisopliae ICIPE 62-based biopesticide could be affected by seasons, it successfully controlled aphid population in cowpea-maize intercrop under field conditions without affecting aphid-associated natural enemies.

13.
Plants (Basel) ; 9(2)2020 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-32059414

RESUMEN

Two pot experiments were conducted in a greenhouse to examine 14C fixation and its distribution in biochemical leaf components, as well as the physiological and anatomical adaptability responses of wheat (Triticum aestivum L.) grown with seawater diluted to 0.2, 3.0, 6.0, and 12.0 dS m-1. The results showed significant reductions in chlorophyll content, 14C fixation (photosynthesis), plant height, main stem diameter, total leaf area per plant, and total dry weight at 3.0, 6.0, and 12.0 dS m-1 seawater salt stress. The 14C loss was very high at 12.0 ds m-1 after 120 h. 14C in lipids (ether extract) showed significant changes at 12.0 dS m-1 at 96 and 120 h. The findings indicated the leaf and stem anatomical feature change of wheat plants resulting from adaptation to salinity stress. A reduction in the anatomical traits of stem and leaf diameter, wall thickness, diameter of the hollow pith cavity, total number of vascular bundles, number of large and small vascular bundles, bundle length and width, thickness of phloem tissue, and diameter of the metaxylem vessel of wheat plants was found. In conclusion, salt stress induces both anatomical and physiological changes in the stem and leaf cells of wheat, as well as the tissues and organs, and these changes in turn make it possible for the plants to adapt successfully to a saline environment.

14.
Foods ; 9(1)2020 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-31936763

RESUMEN

In practice, fresh-cut fruit and fruit salads are currently stored submerged in sugar syrup (approx. 20%) to prevent browning, to slow down physiological processes and to extend shelf life. To minimize browning and microbial spoilage, slices may also be dipped in a citric acid/ascorbic acid solution for 5 min before storage in sugar syrup. To prevent the use of chemicals in organic production, short-term (30 s) hot-water treatment (sHWT) may be an alternative for gentle sanitation. Currently, profound knowledge on the impact of both sugar solution and sHWT on aroma and physiological properties of immersed fresh-cuts is lacking. Aroma is a very important aspect of fruit quality and generated by a great variety of volatile organic compounds (VOCs). Thus, potential interactive effects of sHWT and sugar syrup storage on quality of fresh-cut apple slices were evaluated, focusing on processing-induced changes in VOCs profiles. Intact 'Braeburn' apples were sHW-treated at 55 °C and 65 °C for 30 s, sliced, partially treated with a commercial ascorbic/citric acid solution and slices stored in sugar syrup at 4 °C up to 13 d. Volatile emission, respiration and ethylene release were measured on storage days 5, 10 and 13. The impact of sHWT on VOCs was low while immersion and storage in sugar syrup had a much higher influence on aroma. sHWT did not negatively affect aroma quality of products and may replace acid dipping.

15.
Foods ; 8(12)2019 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-31817779

RESUMEN

Processing, especially cutting, reduces the shelf life of fruits. In practice, fresh-cut fruit salads are, therefore, often sold immersed in sugar syrups to increase shelf life. Pre-processing short-term hot-water treatments (sHWT) may further extend the shelf life of fresh-cuts by effectively reducing microbial contaminations before cutting. In this study, fresh-cut 'Braeburn' apples, a major component of fruit salads, were short-term (30 s) hot water-treated (55 °C or 65 °C), partially treated with a commercial anti-browning solution (ascorbic/citric acid) after cutting and, thereafter, stored immersed in sugar syrup. To, for the first time, comprehensively and comparatively evaluate the currently unexplored positive or negative effects of these treatments on fruit quality and shelf life, relevant parameters were analyzed at defined intervals during storage at 4 °C for up to 13 days. Compared to acid pre-treated controls, sHWT significantly reduced the microbial loads of apple slices but did not affect their quality during the 5 day-standard shelf life period of fresh-cuts. Yeasts were most critical for shelf life of fresh-cut apples immersed in sugar syrup. The combination of sHWT and post-processing acid treatment did not further improve quality or extend shelf life. Although sHWT could not extend potential maximum shelf life beyond 10 d, results highlighted the potentials of this technique to replace pre-processing chemical treatments and, thus, to save valuable resources.

16.
J Econ Entomol ; 111(4): 1587-1594, 2018 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-29788178

RESUMEN

Cowpea, Vigna unguiculata ((L.) Walp; Fabales: Fabaceae), is an important indigenous vegetable and grain legume in the tropics where it represents a major diet component. Cowpea aphid, Aphis craccivora (Koch; Hemiptera: Aphididdae) is a major pest causing up to 100% yield losses. Aiming at establishing alternative approach to synthetic insecticides, we evaluated the pathogenicity of 23 fungal isolates including Metarhizium anisopliae ((Metschn.) Sorokin; Hypocreales: Clavicipitaceae), Beauveria bassiana ((Bals.) Vuill.; Hypocreales: Cordycipitaceae), and Isaria sp. (Hypocreales: Cordycipitaceae) against adult A. craccivora in the laboratory. Adult apterous aphids were sprayed with conidial suspensions titred at 1 × 108 conidia ml-1 for pathogenicity tests while 1 × 104, 1 × 105, 1 × 106, 1 × 107 and 1 × 108 conidia ml-1 were used in dose response bioassays. All the fungal isolates were found pathogenic to A. craccivora, causing mortality of between 34.5 and 90%. The lethal 50% mortality time (LT50) values varied between 3.3 and 6.3 d, with the best isolates being ICIPE 62, ICIPE 41 and ICIPE 644. The lethal concentration mortality (LC50) values were 2.3 × 106, 1.3 × 108 and 1.3 × 109 for ICIPE 62, ICIPE 41, and ICIPE 644, respectively. M. anisopliae isolate ICIPE 62 produced more conidia on aphid cadavers (4.5 × 107) than ICIPE 41 (2.7 × 107) and ICIPE 644 (2.1 × 107) 6 d post-treatment. Relative potency comparison showed that ICIPE 62 was more potent than the other two isolates. In the screenhouse, conidia of ICIPE 62 significantly reduced A. craccivora population compared to control but there was no significant difference between emulsifiable and aqueous formulations. Small-holder leafy vegetable producers could gain more profits using fungal-based biopesticides in Aphid-IPM strategies, leading to reduction of pre-harvest intervals after their application compared to synthetic insecticides.


Asunto(s)
Áfidos , Beauveria , Hypocreales , Metarhizium , Animales , Control Biológico de Vectores
17.
Environ Sci Pollut Res Int ; 25(1): 447-458, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29043589

RESUMEN

Three common plant species (Dieffenbachia maculata, Spathiphyllum wallisii, and Asparagus densiflorus) were tested against their capacity to remove the air pollutants toluene (20.0 mg m-3) and 2-ethylhexanol (14.6 mg m-3) under light or under dark in chamber experiments of 48-h duration. Results revealed only limited pollutant filtration capabilities and indicate that aerial plant parts of the tested species are only of limited value for indoor air quality improvement. The removal rate constant ranged for toluene from 3.4 to 5.7 L h-1 m-2 leaf area with no significant differences between plant species or light conditions (light/dark). The values for 2-ethylhexanol were somewhat lower, fluctuating around 2 L h-1 m-2 leaf area for all plant species tested, whereas differences between light and dark were observed for two of the three species. In addition to pollutant removal, CO2 fixation/respiration and transpiration as well as quantum yield were evaluated. These physiological characteristics seem to have no major impact on the VOC removal rate constant. Exposure to toluene or 2-ethylhexanol revealed no or only minor effects on D. maculata and S. wallisii. In contrast, a decrease in quantum yield and CO2 fixation was observed for A. densiflorus when exposed to 2-ethylhexanol or toluene under light, indicating phytotoxic effects in this species.


Asunto(s)
Contaminantes Atmosféricos/análisis , Contaminación del Aire Interior/prevención & control , Monitoreo del Ambiente/métodos , Hexanoles/análisis , Lilianae/crecimiento & desarrollo , Tolueno/análisis , Contaminación del Aire Interior/análisis , Biodegradación Ambiental
18.
Food Funct ; 7(11): 4660-4674, 2016 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-27775133

RESUMEN

Leaves of Moringa oleifera are used by tribes as biological cancer medicine. Scientific investigations with M. oleifera conducted so far have almost exclusively used total plant extracts. Studies on the activity of single compounds are missing. Therefore, the biological effects of the two main aromatic multi-glycosylated glucosinolates of M. oleifera were investigated in the present study. The cytotoxic effects of M. oleifera glucosinolates were identified for HepG2 cells (NRU assay), for V79-MZ cells (HPRT assay, SCE assay), and for two Salmonella typhimurium strains (Ames test). Genotoxic effects of these glucosinolates were not observed (Ames test, HPRT assay, and SCE assay). Reporter gene assays revealed a significant increase in the ARE-dependent promoter activity of NQO1 and GPx2 indicating an activation of the Nrf2 pathway by M. oleifera glucosinolates. Since both enzymes can also be induced via activation of the AhR, plasmids containing promoters of both enzymes mutated in the respective binding sites (pGL3enh-hNQO1-ARE, pGL3enh-hNQO1-XRE, pGL3bas-hGPX2-mutARE, pGL3bas-hGPX2-mutXRE) were transfected. Analyses revealed that the majority of the stimulating effects was mediated by the ARE motif, whereas the XRE motif played only a minor role. The stimulating effects of M. oleifera glucosinolates could be demonstrated both at the transcriptional (reporter gene assay, real time-PCR) and translational levels (enzyme activity) making them interesting compounds for further investigation.


Asunto(s)
Glucosinolatos/farmacología , Moringa oleifera/química , Extractos Vegetales/farmacología , Línea Celular , Regulación de la Expresión Génica/efectos de los fármacos , Glucosinolatos/química , Humanos , Pruebas de Mutagenicidad , Extractos Vegetales/química , Hojas de la Planta/química , ARN/genética , ARN/metabolismo
19.
Front Plant Sci ; 7: 1256, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27610113

RESUMEN

The spider mite Tetranychus urticae Koch and the aphid Myzus persicae (Sulzer) both infest a number of economically significant crops, including tomato (Solanum lycopersicum). Although used for decades to control pests, the impact of green lacewing larvae Chrysoperla carnea (Stephens) on plant biochemistry was not investigated. Here, we used profiling methods and targeted analyses to explore the impact of the predator and herbivore(s)-predator interactions on tomato biochemistry. Each pest and pest-predator combination induced a characteristic metabolite signature in the leaf and the fruit thus, the plant exhibited a systemic response. The treatments had a stronger impact on non-volatile metabolites including abscisic acid and amino acids in the leaves in comparison with the fruits. In contrast, the various biotic factors had a greater impact on the carotenoids in the fruits. We identified volatiles such as myrcene and α-terpinene which were induced by pest-predator interactions but not by single species, and we demonstrated the involvement of the phytohormone abscisic acid in tritrophic interactions for the first time. More importantly, C. carnea larvae alone impacted the plant metabolome, but the predator did not appear to elicit particular defense pathways on its own. Since the presence of both C. carnea larvae and pest individuals elicited volatiles which were shown to contribute to plant defense, C. carnea larvae could therefore contribute to the reduction of pest infestation, not only by its preying activity, but also by priming responses to generalist herbivores such as T. urticae and M. persicae. On the other hand, the use of C. carnea larvae alone did not impact carotenoids thus, was not prejudicial to the fruit quality. The present piece of research highlights the specific impact of predator and tritrophic interactions with green lacewing larvae, spider mites, and aphids on different components of the tomato primary and secondary metabolism for the first time, and provides cues for further in-depth studies aiming to integrate entomological approaches and plant biochemistry.

20.
J Chem Ecol ; 42(8): 748-755, 2016 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-27518387

RESUMEN

Aggregations of the striped flea beetle Phyllotreta striolata on their crucifer host plants are mediated by volatiles emitted from feeding males. The male-specific sesquiterpene, (6R,7S)-himachala-9,11-diene (compound A), was shown previously to be physiologically and behaviorally active, but compound A was attractive only when combined with unnaturally high doses of the host plant volatile allyl isothiocyanate (AITC) in field trapping experiments. This indicated that our understanding of the chemical communication in this species is incomplete. Another male-specific sesquiterpenoid, (3S,9R,9aS)-3-hydroxy-3,5,5,9-tetramethyl-5,6,7,8,9,9a-hexahydro-1H-benzo[7]annulen-2(3H)-one (compound G), has been reported from an American P. striolata population. We confirmed the presence of compound G, and investigated its interaction with compound A and AITC in a P. striolata population in Taiwan. Compound G was attractive to Taiwanese P. striolata in laboratory bioassays, but significantly more beetles were attracted to a blend of compounds A and G. Under the same conditions, P. striolata showed no preference for the blend of A and G combined with a range of doses of AITC over the sesquiterpenoid blend alone. The sesquiterpenoid blend was tested further in field trapping experiments and attracted significantly more beetles than traps baited with compound A and ecologically relevant amounts of AITC. We conclude that A and G are components of the male-specific aggregation pheromone of P. striolata in Taiwan, and that the attractiveness of the pheromone is not reliant on the presence of AITC. Our results further indicate that the male-specific sesquiterpenoid blends differ qualitatively between the Taiwanese and American populations of P. striolata.


Asunto(s)
Agresión/efectos de los fármacos , Escarabajos/efectos de los fármacos , Feromonas/farmacología , Animales , Conducta Animal/efectos de los fármacos , Bioensayo , Interacciones Farmacológicas , Isotiocianatos/farmacología , Masculino , Feromonas/análisis , Feromonas/química , Sesquiterpenos/análisis , Sesquiterpenos/química , Sesquiterpenos/farmacología , Caracteres Sexuales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...