Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Pediatr Pulmonol ; 57(2): 519-528, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34842360

RESUMEN

BACKGROUND: Biomarkers that can risk-stratify children with influenza virus lower respiratory infection may identify patients for targeted intervention. Early elevation of alveolar-related proteins in the bloodstream in these patients could indicate more severe lung damage portending worse outcomes. METHODS: We used a mouse model of human influenza infection and evaluated relationships between lung pathophysiology and surfactant protein D (SP-D), SP-A, and Club cell protein 16 (CC16). We then measured SP-A, SP-D, and CC16 levels in plasma samples from 94 children with influenza-associated acute respiratory failure (PICFLU cohort), excluding children with underlying conditions explaining disease severity. We tested for associations between levels of circulating proteins and disease severity including the diagnosis of acute respiratory distress syndrome (ARDS), mechanical ventilator, intensive care unit and hospital days, and hospital mortality. RESULTS: Circulating SP-D showed a greater increase than SP-A and CC16 in mice with increased alveolar-vascular permeability following influenza infection. In the PICFLU cohort, SP-D was associated with moderate-severe ARDS diagnosis (p = 0.01) and with mechanical ventilator (r = 0.45, p = 0.002), ICU (r = 0.44, p = 0.002), and hospital days (r = 0.37, p = 0.001) in influenza-infected children without bacterial coinfection. Levels of SP-D were lower in children with secondary bacterial pneumonia (p = 0.01) and not associated with outcomes. CC16 and SP-A levels did not differ with bacterial coinfection and were not consistently associated with severe outcomes. CONCLUSIONS: SP-D has potential as an early circulating biomarker reflecting a degree of lung damage caused directly by influenza virus infection in children. Secondary bacterial pneumonia alters SP-D biomarker performance.


Asunto(s)
Gripe Humana , Lesión Pulmonar , Síndrome de Dificultad Respiratoria , Animales , Biomarcadores , Niño , Humanos , Gripe Humana/complicaciones , Lesión Pulmonar/complicaciones , Ratones , Proteína D Asociada a Surfactante Pulmonar
2.
Mol Cancer Ther ; 20(10): 1956-1965, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34253591

RESUMEN

T-cell-dependent bispecific antibodies (TDB) have been a major advancement in the treatment of cancer, allowing for improved targeting and efficacy for large molecule therapeutics. TDBs are comprised of one arm targeting a surface antigen on a cancer cell and another targeting an engaging surface antigen on a cytotoxic T cell. To impart this function, the antibody must be in a bispecific format as opposed to the more conventional bivalent format. Through in vitro and in vivo studies, we sought to determine the impact of changing antibody valency on solid tumor distribution and catabolism. A bivalent anti-HER2 antibody exhibited higher catabolism than its full-length monovalent binding counterpart in vivo by both invasive tissue harvesting and noninvasive single photon emission computed tomography/X-ray computed tomography imaging despite similar systemic exposures for the two molecules. To determine what molecular factors drove in vivo distribution and uptake, we developed a mechanistic model for binding and catabolism of monovalent and bivalent HER2 antibodies in KPL4 cells. This model suggests that observed differences in cellular uptake of monovalent and bivalent antibodies are caused by the change in apparent affinity conferred by avidity as well as differences in internalization and degradation rates of receptor bound antibodies. To our knowledge, this is the first study to directly compare the targeting abilities of monovalent and bivalent full-length antibodies. These findings may inform diverse antibody therapeutic modalities, including T-cell-redirecting therapies and drug delivery strategies relying upon receptor internalization.


Asunto(s)
Anticuerpos Biespecíficos/farmacología , Anticuerpos Biespecíficos/farmacocinética , Afinidad de Anticuerpos , Neoplasias de la Mama/tratamiento farmacológico , Receptor ErbB-2/antagonistas & inhibidores , Linfocitos T Citotóxicos/inmunología , Animales , Anticuerpos Biespecíficos/inmunología , Apoptosis , Neoplasias de la Mama/inmunología , Neoplasias de la Mama/patología , Proliferación Celular , Femenino , Humanos , Ratones , Ratones SCID , Receptor ErbB-2/inmunología , Distribución Tisular , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
3.
Mol Cancer Ther ; 19(4): 1052-1058, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32024685

RESUMEN

Full-length antibodies lack ideal pharmacokinetic properties for rapid targeted imaging, prompting the pursuit of smaller peptides and fragments. Nevertheless, studying the disposition properties of antibody-based imaging agents can provide critical insight into the pharmacology of their therapeutic counterparts, particularly for those coupled with potent payloads. Here, we evaluate modulation of binding to the neonatal Fc receptor (FcRn) as a protein engineering-based pharmacologic strategy to minimize the overall blood pool background with directly labeled antibodies and undesirable systemic click reaction of radiolabeled tetrazine with circulating pretargeted trans-cyclooctene (TCO)-modified antibodies. Noninvasive SPECT imaging of mice bearing HER2-expressing xenografts was performed both directly (111In-labeled antibody) and indirectly (pretargeted TCO-modified antibody followed by 111In-labeled tetrazine). Pharmacokinetic modulation of antibodies was achieved by two distinct methods: Fc engineering to reduce binding affinity to FcRn, and delayed administration of an antibody that competes with binding to FcRn. Tumor imaging with directly labeled antibodies was feasible in the absence of FcRn binding, rapidly attaining high tumor-to-blood ratios, but accompanied by moderate liver and spleen uptake. Pretargeted imaging of tumors with non-FcRn-binding antibody was also feasible, but systemic click reaction still occurred, albeit at lower levels than with parental antibody. Our findings demonstrate that FcRn binding impairment of full-length IgG antibodies moderately lowers tumor accumulation of radioactivity, and shifts background activity from blood pool to liver and spleen. Furthermore, reduction of FcRn binding did not eliminate systemic click reaction, but yielded greater improvements in tumor-to-blood ratio when imaging with directly labeled antibodies than with pretargeting.


Asunto(s)
Anticuerpos Monoclonales/química , Anticuerpos Monoclonales/farmacología , Neoplasias de la Mama/tratamiento farmacológico , Antígenos de Histocompatibilidad Clase I/metabolismo , Radiofármacos/metabolismo , Receptores Fc/metabolismo , Animales , Neoplasias de la Mama/diagnóstico por imagen , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Química Clic , Femenino , Procesamiento de Imagen Asistido por Computador , Ratones , Ratones SCID , Receptor ErbB-2/metabolismo , Tomografía Computarizada por Tomografía Computarizada de Emisión de Fotón Único
4.
Oncotarget ; 10(58): 6234-6244, 2019 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-31692898

RESUMEN

TENB2, a transmembrane proteoglycan protein, is a promising target for antibody drug conjugate (ADC) therapy due to overexpression in human prostate tumors and rapid internalization. We previously characterized how predosing with parental anti-TENB2 monoclonal antibody (mAb) at 1 mg/kg in a patient-derived LuCap77 explant model with high (3+) TENB2 expression could (i) block target-mediated intestinal uptake of tracer (& 0.1 mg/kg) levels of radiolabeled anti-TENB2-monomethyl auristatin E ADC while preserving tumor uptake, and (ii) maintain efficacy relative to ADC alone. Here, we systematically revisit this strategy to evaluate the effects of predosing on tumor uptake and efficacy in LuCap96.1, a low TENB2-expressing (1+) patient-derived model that is more responsive to ADC therapy than LuCap77. Importantly, rather than using tracer (& 0.1 mg/kg) levels, radiolabeled ADC tumor uptake was assessed at 1 mg/kg - one of the doses evaluated in the tumor growth inhibition study - in an effort to bridge tissue distribution (PK) with efficacy (PD). Predosing with mAb up to 1 mg/kg had no effect on efficacy. These findings warrant further investigations to determine whether predosing prior to ADC therapy might improve therapeutic index by preventing ADC disposition and possible toxicological liabilities in antigen-expressing healthy tissues.

5.
AAPS J ; 20(6): 107, 2018 10 08.
Artículo en Inglés | MEDLINE | ID: mdl-30298434

RESUMEN

We previously performed a comparative assessment of tissue-level vascular physiological parameters in mice and rats, two of the most commonly utilized species in translational drug development. The present work extends this effort to non-human primates by measuring tissue- and organ-level vascular volumes (Vv), interstitial volumes (Vi), and blood flow rates (Q) in cynomolgus monkeys. These measurements were accomplished by red blood cell labeling, extracellular marker infusion, and rubidium chloride bolus distribution, respectively, the same methods used in previous rodent measurements. In addition, whole-body blood volumes (BV) were determined across species. The results demonstrate that Vv, Vi, and Q, measured using our methods scale approximately by body weight across mouse, rat, and monkey in the tissues considered here, where allometric analysis allowed extrapolation to human parameters. Significant differences were observed between the values determined in this study and those reported in the literature, including Vv in muscle, brain, and skin and Q in muscle, adipose, heart, thymus, and spleen. The impact of these differences for selected tissues was evaluated via sensitivity analysis using a physiologically based pharmacokinetic model. The blood-brain barrier in monkeys was shown to be more impervious to an infused radioactive tracer, indium-111-pentetate, than in mice or rats. The body weight-normalized total BV measured in monkey agreed well with previously measured value in rats but was lower than that in mice. These findings have important implications for the common practice of scaling physiological parameters from rodents to primates in translational pharmacology.


Asunto(s)
Desarrollo de Medicamentos/métodos , Modelos Animales , Investigación Farmacéutica/métodos , Animales , Velocidad del Flujo Sanguíneo/fisiología , Volumen Sanguíneo/fisiología , Barrera Hematoencefálica/metabolismo , Peso Corporal/fisiología , Femenino , Macaca fascicularis/fisiología , Masculino , Ratones/fisiología , Radiofármacos/administración & dosificación , Radiofármacos/farmacocinética , Ratas/fisiología , Especificidad de la Especie , Distribución Tisular
6.
MAbs ; 10(8): 1269-1280, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30199303

RESUMEN

Antibody pretargeting is a promising strategy for improving molecular imaging, wherein the separation in time of antibody targeting and radiolabeling can lead to rapid attainment of high contrast, potentially increased sensitivity, and reduced patient radiation exposure. The inverse electron demand Diels-Alder 'click' reaction between trans-cyclooctene (TCO) conjugated antibodies and radiolabeled tetrazines presents an ideal platform for pretargeted imaging due to rapid reaction kinetics, bioorthogonality, and potential for optimization of both slow and fast clearing components. Herein, we evaluated a series of anti-human epidermal growth factor receptor 2 (HER2) pretargeting antibodies containing distinct molar ratios of site-specifically incorporated TCO. The effect of stoichiometry on tissue distribution was assessed for pretargeting TCO-modified antibodies (monitored by 125I) and subsequent accumulation of an 111In-labeled tetrazine in a therapeutically relevant HER2+tumor-bearing mouse model. Single photon emission computed tomography (SPECT) imaging was also employed to assess tumor imaging at various TCO-to-monoclonal antibody (mAb) ratios. Increasing TCO-to-mAb molar ratios correlated with increased in vivo click reaction efficiency evident by increased tumor distribution and systemic exposure of 111In-labeled tetrazines. The pharmacokinetics of TCO-modified antibodies did not vary with stoichiometry. Pretargeted SPECT imaging of HER2-expressing tumors using 111In-labeled tetrazine demonstrated robust click reaction with circulating antibody at ~2 hours and good tumor delineation for both the 2 and 6 TCO-to-mAb ratio variants at 24 hours, consistent with a limited cell-surface pool of pretargeted antibody and benefit from further distribution and internalization. To our knowledge, this represents the first reported systematic analysis of how pretargeted imaging is affected solely by variation in click reaction stoichiometry through site-specific conjugation chemistry.


Asunto(s)
Anticuerpos Monoclonales/química , Química Clic/métodos , Inmunoconjugados/química , Tomografía Computarizada de Emisión de Fotón Único/métodos , Animales , Línea Celular Tumoral , Compuestos Heterocíclicos con 1 Anillo/química , Humanos , Inmunoconjugados/farmacocinética , Inmunoconjugados/farmacología , Marcaje Isotópico/métodos , Ratones , Neoplasias/diagnóstico por imagen , Neoplasias/metabolismo , Neoplasias/terapia , Radioinmunoterapia/métodos , Receptor ErbB-2/inmunología , Receptor ErbB-2/metabolismo , Distribución Tisular , Ensayos Antitumor por Modelo de Xenoinjerto
7.
Mol Pharm ; 15(9): 3979-3996, 2018 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-30040421

RESUMEN

A number of cytotoxic pyrrolobenzodiazepine (PBD) monomers containing various disulfide-based prodrugs were evaluated for their ability to undergo activation (disulfide cleavage) in vitro in the presence of either glutathione (GSH) or cysteine (Cys). A good correlation was observed between in vitro GSH stability and in vitro cytotoxicity toward tumor cell lines. The prodrug-containing compounds were typically more potent against cells with relatively high intracellular GSH levels (e.g., KPL-4 cells). Several antibody-drug conjugates (ADCs) were subsequently constructed from PBD dimers that incorporated selected disulfide-based prodrugs. Such HER2 conjugates exhibited potent antiproliferation activity against KPL-4 cells in vitro in an antigen-dependent manner. However, the disulfide prodrugs contained in the majority of such entities were surprisingly unstable toward whole blood from various species. One HER2-targeting conjugate that contained a thiophenol-derived disulfide prodrug was an exception to this stability trend. It exhibited potent activity in a KPL-4 in vivo efficacy model that was approximately three-fold weaker than that displayed by the corresponding parent ADC. The same prodrug-containing conjugate demonstrated a three-fold improvement in mouse tolerability properties in vivo relative to the parent ADC, which did not contain the prodrug.


Asunto(s)
Benzodiazepinas/química , Disulfuros/química , Inmunoconjugados/química , Profármacos/química , Pirroles/química , Línea Celular Tumoral , Cisteína/metabolismo , Glutatión/metabolismo , Humanos , Inmunoconjugados/metabolismo , Estructura Molecular
8.
J Pharm Sci ; 105(7): 2066-72, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27262204

RESUMEN

Due to their potential influence on stability, pharmacokinetics, and product consistency, antibody charge variants have attracted considerable attention in the biotechnology industry. Subtle to significant differences in the level of charge variants and new charge variants under various cell culture conditions are often observed during routine manufacturing or process changes and pose a challenge when demonstrating product comparability. To explore potential solutions to control charge heterogeneity, monoclonal antibodies (mAbs) with native, wild-type C-termini, and mutants with C-terminal deletions of either lysine or lysine and glycine were constructed, expressed, purified, and characterized in vitro and in vivo. Analytical and physiological characterization demonstrated that the mAb mutants had greatly reduced levels of basic variants without decreasing antibody biologic activity, structural stability, pharmacokinetics, or subcutaneous bioavailability in rats. This study provides a possible solution to mitigate mAb heterogeneity in C-terminal processing, improve batch-to-batch consistency, and facilitate the comparability study during process changes.


Asunto(s)
Anticuerpos Monoclonales/química , Anticuerpos Monoclonales/farmacocinética , Animales , Anticuerpos Monoclonales/genética , Disponibilidad Biológica , Cromatografía en Gel , Cromatografía Líquida de Alta Presión , Cromatografía por Intercambio Iónico , Estabilidad de Medicamentos , Glicina/química , Inyecciones Subcutáneas , Focalización Isoeléctrica , Lisina/química , Masculino , Mutación , Ratas , Ratas Sprague-Dawley
9.
J Biol Chem ; 290(50): 29732-41, 2015 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-26491012

RESUMEN

The pharmacokinetic (PK) behavior of monoclonal antibodies in cynomolgus monkeys (cynos) is generally translatable to that in humans. Unfortunately, about 39% of the antibodies evaluated for PKs in cynos have fast nonspecific (or non-target-mediated) clearance (in-house data). An empirical model relating variable region (Fv) charge and hydrophobicity to cyno nonspecific clearance was developed to gauge the risk an antibody would have for fast nonspecific clearance in the monkey. The purpose of this study was to evaluate the predictability of this empirical model on cyno nonspecific clearance with antibodies specifically engineered to have either high or low Fv charge. These amino acid changes were made in the Fv region of two test antibodies, humAb4D5-8 and anti-lymphotoxin α. The humAb4D5-8 has a typical nonspecific clearance in cynos, and by making it more positively charged, the antibody acquires fast nonspecific clearance, and making it less positively charged did not impact its clearance. Anti-lymphotoxin α has fast nonspecific clearance in cynos, and making it more positively charged caused it to clear even faster, whereas making it less positively charged caused it to clear slower and within the typical range. These trends in clearance were also observed in two other preclinical species, mice and rats. The effect of modifying Fv charge on subcutaneous bioavailability was also examined, and in general bioavailability was inversely related to the direction of the Fv charge change. Thus, modifying Fv charge appears to impact antibody PKs, and the changes tended to correlate with those predicted by the empirical model.


Asunto(s)
Región Variable de Inmunoglobulina/inmunología , Farmacocinética , Animales , Ensayo de Inmunoadsorción Enzimática , Región Variable de Inmunoglobulina/química , Macaca fascicularis , Medición de Riesgo
10.
Neuron ; 88(2): 289-97, 2015 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-26494278

RESUMEN

The blood-brain barrier (BBB) limits brain uptake of therapeutic antibodies. It is believed that the BBB is disrupted in Alzheimer's disease (AD), potentially increasing drug permeability de facto. Here we compared active versus passive brain uptake of systemically dosed antibodies (anti-transferrin receptor [TfR] bispecific versus control antibody) in mouse models of AD. We first confirmed BBB disruption in a mouse model of multiple sclerosis as a positive control. Importantly, we found that BBB permeability was vastly spared in mouse models of AD, including PS2-APP, Tau transgenics, and APOE4 knockin mice. Brain levels of TfR in mouse models or in human cases of AD resembled controls, suggesting target engagement of TfR bispecific is not limited. Furthermore, infarcts from human AD brain showed similar occurrences compared to age-matched controls. These results question the widely held view that the BBB is largely disrupted in AD, raising concern about assumptions of drug permeability in disease.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Anticuerpos/metabolismo , Anticuerpos/uso terapéutico , Barrera Hematoencefálica/metabolismo , Modelos Animales de Enfermedad , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/patología , Animales , Barrera Hematoencefálica/efectos de los fármacos , Barrera Hematoencefálica/patología , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Proteínas Recombinantes de Fusión/metabolismo , Anticuerpos de Cadena Única/metabolismo
11.
Mol Pharm ; 11(5): 1591-8, 2014 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-24702191

RESUMEN

A solid understanding of physiology is beneficial in optimizing drug delivery and in the development of clinically predictive models of drug disposition kinetics. Although an abundance of data exists in the literature, it is often confounded by the use of various experimental methods and a lack of consensus in values from different sources. To help address this deficiency, we sought to directly compare three important vascular parameters at the tissue level using the same experimental approach in both mice and rats. Interstitial volume, vascular volume, and blood flow were radiometrically measured in selected harvested tissues of both species by extracellular marker infusion, red blood cell labeling, and rubidium chloride bolus distribution, respectively. The latter two parameters were further compared by whole-body autoradiographic imaging. An overall good interspecies agreement was observed for interstitial volume and blood flow on a weight-normalized basis in most tissues. In contrast, the measured vascular volumes of most rat tissues were higher than for mouse. Mice and rats, the two most commonly utilized rodent species in translational drug development, should not be considered as interchangeable in terms of vascular volume per gram of tissue. This will be particularly critical in biodistribution studies of drugs, as the amount of drug in the residual blood of tissues is often not negligible, especially for biologic drugs (e.g., antibodies) having long circulation half-lives. Physiologically based models of drug pharmacokinetics and/or pharmacodynamics also rely on accurate knowledge of biological parameters in tissues. For tissue parameters with poor interspecies agreement, the significance and possible drivers are discussed.


Asunto(s)
Volumen Sanguíneo/fisiología , Ratones/fisiología , Ratas/fisiología , Animales , Peso Corporal/fisiología , Femenino , Modelos Teóricos , Ratas Sprague-Dawley
12.
J Med Chem ; 56(23): 9418-26, 2013 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-24131491

RESUMEN

A known limitation of iodine radionuclides for labeling and biological tracking of receptor targeted proteins is the tendency of iodotyrosine to rapidly diffuse from cells following endocytosis and lysosomal degradation. In contrast, radiometal-chelate complexes such as indium-111-1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (In-111-DOTA) accumulate within target cells due to the residualizing properties of the polar, charged metal-chelate-amino acid adduct. Iodine radionuclides boast a diversity of nuclear properties and chemical means for incorporation, prompting efforts to covalently link radioiodine with residualizing molecules. Herein, we describe the Ugi-assisted synthesis of [I-125]HIP-DOTA, a 4-hydroxy-3-iodophenyl (HIP) derivative of DOTA, and demonstration of its residualizing properties in a murine xenograft model. Overall, this study displays the power of multicomponent synthesis to yield a versatile radioactive probe for antibodies across multiple therapeutic areas with potential applications in both preclinical biodistribution studies and clinical radioimmunotherapies.


Asunto(s)
Anticuerpos Monoclonales de Origen Murino/metabolismo , Dipéptidos/síntesis química , Compuestos Heterocíclicos con 1 Anillo/síntesis química , Inmunoconjugados/química , Succinimidas/síntesis química , Animales , Anticuerpos Monoclonales de Origen Murino/química , Anticuerpos Monoclonales de Origen Murino/uso terapéutico , Complejos de Coordinación/metabolismo , Dipéptidos/metabolismo , Compuestos Heterocíclicos con 1 Anillo/metabolismo , Inmunoconjugados/metabolismo , Radioisótopos de Indio , Ratones , Radioinmunoterapia , Succinimidas/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
13.
Mol Pharm ; 10(5): 1514-21, 2013 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-23383983

RESUMEN

The development of clinically relevant preclinical models that mimic the hallmarks of neurodegenerative disease is an ongoing pursuit in early drug development. In particular, robust physiological characterization of central nervous system (CNS) disease models is necessary to predict drug delivery to target tissues and to correctly interpret pharmacodynamic responses to disease-modifying therapeutic candidates. Efficient drug delivery across the blood-CNS barrier is a particularly daunting task, prompting our strategy to evaluate the biodistribution of five distinct molecular probes in a well-characterized mouse model of neurodegeneration. A transgenic mouse model of amyotrophic lateral sclerosis was selected based on a phenotype resembling clinical symptoms, including loss of motor neurons from the spinal cord and paralysis in one or more limbs, due to expression of a G93A mutant form of human superoxide dismutase (SOD1). The tissue distributions of two proteins, albumin and a representative immunoglobulin G antibody, as well as two blood flow markers, the lipophilic blood flow marker Ceretec (i.e., (99m)Tc-HMPAO) and the polar ionic tracer, rubidium-86 chloride ((86)RbCl), were measured following intravenous injection in SOD1(G93A) and age-matched control mice. The radiopharmaceutical TechneScan PYP was also used to measure the distribution of (99m)Tc-labeled red blood cells as a blood pool marker. Both the antibody and (86)Rb were able to cross the blood-spinal cord barrier in SOD1(G93A) mice to a greater extent than in control mice. Although the biodistribution patterns of antibody, albumin, and RBCs were largely similar, notable differences were detected in muscle and skin. Moreover, vastly different biodistribution patterns were observed for a lipophilic and polar perfusion agent, with SOD1(G93A) mutation resulting in reduced renal filtration rates for the former but not the latter. Overall, the multiprobe strategy provided an opportunity to efficiently collect an abundance of physiological information, including the degree and regional extent of blood-CNS barrier permeability, in a preclinical model of neurodegeneration.


Asunto(s)
Degeneración Nerviosa/fisiopatología , Esclerosis Amiotrófica Lateral/diagnóstico por imagen , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/fisiopatología , Animales , Volumen Sanguíneo , Barrera Hematoencefálica/fisiología , Circulación Cerebrovascular , Cloruros/farmacocinética , Modelos Animales de Enfermedad , Sistemas de Liberación de Medicamentos , Femenino , Humanos , Inmunoglobulina G/metabolismo , Ratones , Ratones Mutantes , Ratones Transgénicos , Transporte de Proteínas , Cintigrafía , Radiofármacos/farmacocinética , Rubidio/farmacocinética , Radioisótopos de Rubidio/farmacocinética , Superóxido Dismutasa/genética , Exametazima de Tecnecio Tc 99m/farmacocinética , Distribución Tisular
14.
Br J Pharmacol ; 168(2): 445-57, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22889168

RESUMEN

BACKGROUND AND PURPOSE: The success of antibody-drug conjugates (ADCs) depends on the therapeutic window rendered by the differential expression between normal and pathological tissues. The ability to identify and visualize target expression in normal tissues could reveal causes for target-mediated clearance observed in pharmacokinetic characterization. TENB2 is a prostate cancer target associated with the progression of poorly differentiated and androgen-independent tumour types, and ADCs specific for TENB2 are candidate therapeutics. The objective of this study was to locate antigen expression of TENB2 in normal tissues, thereby elucidating the underlying causes of target-mediated clearance. EXPERIMENTAL APPROACH: A series of pharmacokinetics, tissue distribution and mass balance studies were conducted in mice using a radiolabelled anti-TENB2 ADC. These data were complemented by non-invasive single photon emission computed tomography - X-ray computed tomography imaging and immunohistochemistry. KEY RESULTS: The intestines were identified as a saturable and specific antigen sink that contributes, at least in part, to the rapid target-mediated clearance of the anti-TENB2 antibody and its drug conjugate in rodents. As a proof of concept, we also demonstrated the selective disposition of the ADC in a tumoural environment in vivo using the LuCaP 77 transplant mouse model. High tumour uptake was observed despite the presence of the antigen sink, and antigen specificity was confirmed by antigen blockade. CONCLUSIONS AND IMPLICATIONS: Our findings provide the anatomical location and biological interpretation of target-mediated clearance of anti-TENB2 antibodies and corresponding drug conjugates. Further investigations may be beneficial in addressing the relative contributions to ADC disposition from antigen expression in both normal and pathological tissues.


Asunto(s)
Antígenos/inmunología , Compuestos Heterocíclicos con 1 Anillo/farmacocinética , Inmunoconjugados/farmacocinética , Proteínas de la Membrana/inmunología , Proteínas de Neoplasias/inmunología , Oligopéptidos/farmacocinética , Animales , Línea Celular Tumoral , Citotoxinas/química , Compuestos Heterocíclicos con 1 Anillo/química , Inmunoconjugados/química , Masculino , Ratones , Ratones SCID , Neoplasias/metabolismo , Oligopéptidos/química , Preparaciones Farmacéuticas , Distribución Tisular
15.
Mol Cancer Ther ; 11(3): 752-62, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22222630

RESUMEN

Both human epidermal growth factor receptor 2 (HER-2/neu) and VEGF overexpression correlate with aggressive phenotypes and decreased survival among breast cancer patients. Concordantly, the combination of trastuzumab (anti-HER2) with bevacizumab (anti-VEGF) has shown promising results in preclinical xenograft studies and in clinical trials. However, despite the known antiangiogenic mechanism of anti-VEGF antibodies, relatively little is known about their effects on the pharmacokinetics and tissue distribution of other antibodies. This study aimed to measure the disposition properties, with a particular emphasis on tumor uptake, of trastuzumab in the presence or absence of anti-VEGF. Radiolabeled trastuzumab was administered alone or in combination with an anti-VEGF antibody to mice bearing HER2-expressing KPL-4 breast cancer xenografts. Biodistribution, autoradiography, and single-photon emission computed tomography-X-ray computed tomography imaging all showed that anti-VEGF administration reduced accumulation of trastuzumab in tumors despite comparable blood exposures and similar distributions in most other tissues. A similar trend was also observed for an isotype-matched IgG with no affinity for HER2, showing reduced vascular permeability to macromolecules. Reduced tumor blood flow (P < 0.05) was observed following anti-VEGF treatment, with no significant differences in the other physiologic parameters measured despite immunohistochemical evidence of reduced vascular density. In conclusion, anti-VEGF preadministration decreased tumor uptake of trastuzumab, and this phenomenon was mechanistically attributed to reduced vascular permeability and blood perfusion. These findings may ultimately help inform dosing strategies to achieve improved clinical outcomes.


Asunto(s)
Anticuerpos Monoclonales Humanizados/farmacocinética , Anticuerpos Monoclonales/farmacología , Neoplasias de la Mama/tratamiento farmacológico , Ensayos Antitumor por Modelo de Xenoinjerto , Animales , Anticuerpos Monoclonales/inmunología , Anticuerpos Monoclonales Humanizados/química , Afinidad de Anticuerpos/inmunología , Especificidad de Anticuerpos/inmunología , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Línea Celular Tumoral , Relación Dosis-Respuesta a Droga , Femenino , Humanos , Inmunohistoquímica , Radioisótopos de Indio/química , Radioisótopos de Indio/farmacocinética , Radioisótopos de Yodo/química , Radioisótopos de Yodo/farmacocinética , Ratones , Ratones Desnudos , Imagen Multimodal , Tomografía de Emisión de Positrones , Receptor ErbB-2/inmunología , Receptor ErbB-2/metabolismo , Distribución Tisular , Tomografía Computarizada por Rayos X , Trastuzumab , Factor A de Crecimiento Endotelial Vascular/inmunología , Factor A de Crecimiento Endotelial Vascular/metabolismo
16.
Science ; 335(6064): 89-92, 2012 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-22174130

RESUMEN

Lysosomal storage diseases (LSDs) are a group of heterogeneous disorders caused by defects in lysosomal enzymes or transporters, resulting in accumulation of undegraded macromolecules or metabolites. Macrophage numbers are expanded in several LSDs, leading to histiocytosis of unknown pathophysiology. Here, we found that mice lacking the equilibrative nucleoside transporter 3 (ENT3) developed a spontaneous and progressive macrophage-dominated histiocytosis. In the absence of ENT3, defective apoptotic cell clearance led to lysosomal nucleoside buildup, elevated intralysosomal pH, and altered macrophage function. The macrophage accumulation was partly due to increased macrophage colony-stimulating factor and receptor expression and signaling secondary to the lysosomal defects. These studies suggest a cellular and molecular basis for the development of histiocytosis in several human syndromes associated with ENT3 mutations and potentially other LSDs.


Asunto(s)
Histiocitosis/fisiopatología , Homeostasis , Lisosomas/fisiología , Macrófagos/fisiología , Proteínas de Transporte de Nucleósidos/fisiología , Adenosina/metabolismo , Animales , Apoptosis , Recuento de Células , Proliferación Celular , Células Cultivadas , Humanos , Concentración de Iones de Hidrógeno , Listeriosis/inmunología , Listeriosis/microbiología , Enfermedades por Almacenamiento Lisosomal/fisiopatología , Lisosomas/ultraestructura , Factor Estimulante de Colonias de Macrófagos/metabolismo , Macrófagos/inmunología , Macrófagos/ultraestructura , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Mielopoyesis , Proteínas de Transporte de Nucleósidos/genética , Fagocitosis , Receptor de Factor Estimulante de Colonias de Macrófagos/metabolismo , Transducción de Señal , Timocitos/inmunología , Timocitos/fisiología
17.
Br J Pharmacol ; 166(1): 368-77, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22074316

RESUMEN

BACKGROUND AND PURPOSE: Neuropilin-1 (NRP1) is a VEGF receptor that is widely expressed in normal tissues and is involved in tumour angiogenesis. MNRP1685A is a rodent and primate cross-binding human monoclonal antibody against NRP1 that exhibits inhibition of tumour growth in NPR1-expressing preclinical models. However, widespread NRP1 expression in normal tissues may affect MNRP1685A tumour uptake. The objective of this study was to assess MNRP1685A biodistribution in tumour-bearing mice to understand the relationships between dose, non-tumour tissue uptake and tumour uptake. EXPERIMENTAL APPROACH: Non-tumour-bearing mice were given unlabelled MNRP1685A at 10 mg·kg(-1) . Tumour-bearing mice were given (111) In-labelled MNRP1685A along with increasing amounts of unlabelled antibody. Blood and tissues were collected from all animals to determine drug concentration (unlabelled) or radioactivity level (radiolabelled). Some animals were imaged using single photon emission computed tomography - X-ray computed tomography. KEY RESULTS: MNRP1685A displayed faster serum clearance than pertuzumab, indicating that target binding affected MNRP1685A clearance. I.v. administration of (111) In-labelled MNRP1685A to tumour-bearing mice yielded minimal radioactivity in the plasma and tumour, but high levels in the lungs and liver. Co-administration of unlabelled MNRP1685A with the radiolabelled antibody was able to competitively block lungs and liver radioactivity uptake in a dose-dependent manner while augmenting plasma and tumour radioactivity levels. CONCLUSIONS AND IMPLICATIONS: These results indicate that saturation of non-tumour tissue uptake is required in order to achieve tumour uptake and acceptable exposure to antibody. Utilization of a rodent and primate cross-binding antibody allows for translation of these results to clinical settings.


Asunto(s)
Anticuerpos Monoclonales/farmacocinética , Neoplasias del Colon/tratamiento farmacológico , Neuropilina-1/inmunología , Animales , Anticuerpos Monoclonales/administración & dosificación , Anticuerpos Monoclonales/inmunología , Anticuerpos Monoclonales Humanizados/farmacocinética , Neoplasias del Colon/patología , Relación Dosis-Respuesta a Droga , Femenino , Humanos , Radioisótopos de Indio/química , Radioisótopos de Yodo/química , Ratones , Ratones Desnudos , Imagen Multimodal/métodos , Neoplasias Experimentales , Tomografía de Emisión de Positrones , Distribución Tisular , Tomografía Computarizada por Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...