Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
2.
Turk Gogus Kalp Damar Cerrahisi Derg ; 31(3): 352-357, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37664778

RESUMEN

Background: The aim of this study was to investigate the prevalence of novel coronavirus disease 2019 (COVID-19) in patients hospitalized with primary spontaneous pneumothorax and to evaluate its possible effects on the clinical course, treatment, and the prognosis. Methods: Between April 2020 and January 2021, a total of 86 patients (78 males, 8 females; mean age: 27±5 years; range, 16 to 40 years) who had no underlying lung disease and were diagnosed with the first episode of spontaneous pneumothorax were retrospectively analyzed. At the same time of diagnosis, all patients were screened for COVID-19 via polymerase chain reaction test of nasopharyngeal swabs. According to the test results, the patients were divided into two groups as COVID-19(+) and COVID-19(-). The duration of air leak, hospital stay, recurrence rates and treatment modalities, and mortality rates of the two groups were compared. Results: Following a pneumothorax diagnosis, 18 (21%) patients were diagnosed with COVID-19. In COVID-19(+) patients, the mean air leak and lung expansion duration were significantly longer (p<0.0001 for both). In these patients, the mean length of hospital stay was also significantly longer (p<0.0001). During the median follow-up of six months, no mortality was observed and the recurrence rate was similar between the two groups (p=0.998). Conclusion: Our study results suggest that COVID-19 negatively affects the recovery time in patients with spontaneous pneumothorax.

3.
Cells ; 12(4)2023 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-36831238

RESUMEN

Neuron-to-neuron transfer of pathogenic α-synuclein species is a mechanism of likely relevance to Parkinson's disease development. Experimentally, interneuronal α-synuclein spreading from the low brainstem toward higher brain regions can be reproduced by the administration of AAV vectors encoding for α-synuclein into the mouse vagus nerve. The aim of this study was to determine whether α-synuclein's spreading ability is shared by other proteins. Given α-synuclein synaptic localization, experiments involved intravagal injections of AAVs encoding for other synaptic proteins, ß-synuclein, VAMP2, or SNAP25. Administration of AAV-VAMP2 or AAV-SNAP25 caused robust transduction of either of the proteins in the dorsal medulla oblongata but was not followed by interneuronal VAMP2 or SNAP25 transfer and caudo-rostral spreading. In contrast, AAV-mediated ß-synuclein overexpression triggered its spreading to more frontal brain regions. The aggregate formation was investigated as a potential mechanism involved in protein spreading, and consistent with this hypothesis, results showed that overexpression of ß-synuclein, but not VAMP2 or SNAP25, in the dorsal medulla oblongata was associated with pronounced protein aggregation. Data indicate that interneuronal protein transfer is not a mere consequence of increased expression or synaptic localization. It is rather promoted by structural/functional characteristics of synuclein proteins that likely include their tendency to form aggregate species.


Asunto(s)
Enfermedad de Parkinson , alfa-Sinucleína , Ratones , Animales , alfa-Sinucleína/metabolismo , Sinucleína beta/metabolismo , Enfermedad de Parkinson/metabolismo , Encéfalo/metabolismo , Tronco Encefálico/patología , Proteína 2 de Membrana Asociada a Vesículas/metabolismo
4.
Exp Mol Med ; 54(12): 2148-2161, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36473937

RESUMEN

The clinical progression of neurodegenerative diseases correlates with the spread of proteinopathy in the brain. The current understanding of the mechanism of proteinopathy spread is far from complete. Here, we propose that inflammation is fundamental to proteinopathy spread. A sequence variant of α-synuclein (V40G) was much less capable of fibril formation than wild-type α-synuclein (WT-syn) and, when mixed with WT-syn, interfered with its fibrillation. However, when V40G was injected intracerebrally into mice, it induced aggregate spreading even more effectively than WT-syn. Aggregate spreading was preceded by sustained microgliosis and inflammatory responses, which were more robust with V40G than with WT-syn. Oral administration of an anti-inflammatory agent suppressed aggregate spreading, inflammation, and behavioral deficits in mice. Furthermore, exposure of cells to inflammatory cytokines increased the cell-to-cell propagation of α-synuclein. These results suggest that the inflammatory microenvironment is the major driver of the spread of synucleinopathy in the brain.


Asunto(s)
Enfermedades Neurodegenerativas , Sinucleinopatías , Ratones , Animales , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo , Encéfalo/metabolismo , Inflamación , Modelos Animales de Enfermedad
5.
Sci Adv ; 8(35): eabn0356, 2022 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-36044566

RESUMEN

Interneuronal transfer and brain spreading of pathogenic proteins are features of neurodegenerative diseases. Pathophysiological conditions and mechanisms affecting this spreading remain poorly understood. This study investigated the relationship between neuronal activity and interneuronal transfer of α-synuclein, a Parkinson-associated protein, and elucidated mechanisms underlying this relationship. In a mouse model of α-synuclein brain spreading, hyperactivity augmented and hypoactivity attenuated protein transfer. Important features of neuronal hyperactivity reported here were an exacerbation of oxidative and nitrative reactions, pronounced accumulation of nitrated α-synuclein, and increased protein aggregation. Data also pointed to mitochondria as key targets and likely sources of reactive oxygen and nitrogen species within hyperactive neurons. Rescue experiments designed to counteract the increased burden of reactive oxygen species reversed hyperactivity-induced α-synuclein nitration, aggregation, and interneuronal transfer, providing first evidence of a causal link between these pathological effects of neuronal stimulation and indicating a mechanistic role of oxidant stress in hyperactivity-induced α-synuclein spreading.


Asunto(s)
Enfermedad de Parkinson , alfa-Sinucleína , Animales , Encéfalo/metabolismo , Ratones , Neuronas/metabolismo , Oxidantes , Enfermedad de Parkinson/metabolismo
6.
Ann Thorac Surg ; 113(5): e363-e365, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-34331933

RESUMEN

Surgical procedure is still used as the first choice in the treatment of pulmonary hydatid cysts. Video-assisted thoracoscopic surgery has started to be performed as a minimally invasive surgical option in recent years for lung hydatid cyst; however, few cases have been reported in the literature, especially in children. Thoracoscopic surgery experience is limited in pulmonary hydatid cyst for both adults and children. We present a pediatric case of giant lung hydatid cyst, in which we performed partial capitonnage with video-assisted thoracoscopic surgery and fibrin glue.


Asunto(s)
Equinococosis Pulmonar , Adhesivo de Tejido de Fibrina , Adulto , Niño , Equinococosis Pulmonar/diagnóstico por imagen , Equinococosis Pulmonar/cirugía , Adhesivo de Tejido de Fibrina/uso terapéutico , Humanos , Procedimientos Quirúrgicos Mínimamente Invasivos , Estudios Retrospectivos , Cirugía Torácica Asistida por Video/métodos
7.
Neurobiol Dis ; 163: 105599, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34952161

RESUMEN

Alpha-synuclein aggregates are the hallmark pathology of Parkinson's disease, which can propagate in a stereotypical pattern along the brain-body axis. Parkinson's disease patients not only display heterogeneous symptoms but also show variable patterns of alpha-synuclein pathology and affected neuronal systems during the disease course, complicating early and accurate diagnosis. Emerging data from post-mortem and imaging studies strongly suggest that disease heterogeneity could, at least in part, be explained by variable disease onset site, i.e. brain or body. This has led to the recently hypothesized formulation of two Parkinson's disease-subtypes, a body-first subtype where pathogenic alpha-synuclein arises in the body and spreads to the brain, and a brain-first subtype where pathogenic alpha-synuclein arises in the brain and spreads to the body. From a preclinical perspective, several animal models have been adapted or developed to reproduce Parkinson's disease-like pathology in the brain or periphery aiming to address the site of disease onset. Here, we review the current rodent and primate models that aim to reproduce Parkinson's disease pathology development and spreading in the brain and/or body and discuss the value and shortcomings of these models for the development of potential future applications in clinical trials and personalized medicine.


Asunto(s)
Encéfalo/fisiopatología , Modelos Animales de Enfermedad , Enfermedad de Parkinson/fisiopatología , alfa-Sinucleína/metabolismo , Animales , Encéfalo/metabolismo , Enfermedad de Parkinson/metabolismo
8.
Cell Rep ; 36(11): 109697, 2021 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-34525371

RESUMEN

Midbrain dopaminergic (mDA) neurons are diverse in their projection targets, effect on behavior, and susceptibility to neurodegeneration. Little is known about the molecular mechanisms establishing this diversity during development. We show that the transcription factor BCL11A is expressed in a subset of mDA neurons in the developing and adult murine brain and in a subpopulation of pluripotent-stem-cell-derived human mDA neurons. By combining intersectional labeling and viral-mediated tracing, we demonstrate that Bcl11a-expressing mDA neurons form a highly specific subcircuit within the murine dopaminergic system. In the substantia nigra, the Bcl11a-expressing mDA subset is particularly vulnerable to neurodegeneration upon α-synuclein overexpression or oxidative stress. Inactivation of Bcl11a in murine mDA neurons increases this susceptibility further, alters the distribution of mDA neurons, and results in deficits in skilled motor behavior. In summary, BCL11A defines mDA subpopulations with highly distinctive characteristics and is required for establishing and maintaining their normal physiology.


Asunto(s)
Neuronas Dopaminérgicas/metabolismo , Proteínas Represoras/metabolismo , Animales , Conducta Animal , Encéfalo/metabolismo , Dopamina/metabolismo , Humanos , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/metabolismo , Masculino , Ratones , Ratones Noqueados , Proteínas Represoras/deficiencia , Proteínas Represoras/genética , Sustancia Negra/metabolismo , Sustancia Negra/patología , Transcriptoma , Área Tegmental Ventral/metabolismo , Área Tegmental Ventral/patología , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo
9.
J Mol Biol ; 433(12): 166961, 2021 06 11.
Artículo en Inglés | MEDLINE | ID: mdl-33774037

RESUMEN

Neurotransmission relies on the tight spatial and temporal regulation of the synaptic vesicle (SV) cycle. Nerve terminals contain hundreds of SVs that form tight clusters. These clusters represent a distinct liquid phase in which one component of the phase are SVs and the other synapsin 1, a highly abundant synaptic protein. Another major family of disordered proteins at the presynapse includes synucleins, most notably α-synuclein. The precise physiological role of α-synuclein in synaptic physiology remains elusive, albeit its role has been implicated in nearly all steps of the SV cycle. To determine the effect of α-synuclein on the synapsin phase, we employ the reconstitution approach using natively purified SVs from rat brains and the heterologous cell system to generate synapsin condensates. We demonstrate that synapsin condensates recruit α-synuclein, and while enriched into these synapsin condensates, α-synuclein still maintains its high mobility. The presence of SVs enhances the rate of synapsin/α-synuclein condensation, suggesting that SVs act as catalyzers for the formation of synapsin condensates. Notably, at physiological salt and protein concentrations, α-synuclein alone is not able to cluster isolated SVs. Excess of α-synuclein disrupts the kinetics of synapsin/SV condensate formation, indicating that the molar ratio between synapsin and α-synuclein is important in assembling the functional condensates of SVs. Understanding the molecular mechanism of α-synuclein interactions at the nerve terminals is crucial for clarifying the pathogenesis of synucleinopathies, where α-synuclein, synaptic proteins and lipid organelles all accumulate as insoluble intracellular inclusions.


Asunto(s)
Encéfalo/citología , Sinapsinas/metabolismo , Vesículas Sinápticas/metabolismo , alfa-Sinucleína/metabolismo , Animales , Encéfalo/metabolismo , Células HEK293 , Humanos , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Sustancias Macromoleculares/química , Sustancias Macromoleculares/metabolismo , Microscopía Confocal , Microscopía Fluorescente , Ratas , Sinapsinas/química , Transmisión Sináptica , alfa-Sinucleína/química , Proteína Fluorescente Roja
10.
Cell Death Differ ; 28(5): 1720-1732, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33323945

RESUMEN

Alterations in the metabolism of iron and its accumulation in the substantia nigra pars compacta accompany the pathogenesis of Parkinson's disease (PD). Changes in iron homeostasis also occur during aging, which constitutes a PD major risk factor. As such, mitigation of iron overload via chelation strategies has been considered a plausible disease modifying approach. Iron chelation, however, is imperfect because of general undesired side effects and lack of specificity; more effective approaches would rely on targeting distinctive pathways responsible for iron overload in brain regions relevant to PD and, in particular, the substantia nigra. We have previously demonstrated that the Transferrin/Transferrin Receptor 2 (TfR2) iron import mechanism functions in nigral dopaminergic neurons, is perturbed in PD models and patients, and therefore constitutes a potential therapeutic target to halt iron accumulation. To validate this hypothesis, we generated mice with targeted deletion of TfR2 in dopaminergic neurons. In these animals, we modeled PD with multiple approaches, based either on neurotoxin exposure or alpha-synuclein proteotoxic mechanisms. We found that TfR2 deletion can provide neuroprotection against dopaminergic degeneration, and against PD- and aging-related iron overload. The effects, however, were significantly more pronounced in females rather than in males. Our data indicate that the TfR2 iron import pathway represents an amenable strategy to hamper PD progression. Data also suggest, however, that therapeutic strategies targeting TfR2 should consider a potential sexual dimorphism in neuroprotective response.


Asunto(s)
Fármacos Neuroprotectores/uso terapéutico , Enfermedad de Parkinson/genética , Receptores de Transferrina/metabolismo , Animales , Modelos Animales de Enfermedad , Femenino , Identidad de Género , Humanos , Ratones , Fármacos Neuroprotectores/farmacología
11.
Exp Neurol ; 330: 113357, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32437708

RESUMEN

BACKGROUND: Cognitive dysfunction is one of the most disabling non-motor symptoms of Parkinson's disease (PD), though its pathological correlates still remain elusive. Hippocampal Lewy pathology has recently been correlated by compelling evidence from post-mortem and imaging studies. Animal models recapitulating cognitive impairment in PD are essential to better understand the underlying pathophysiology. To investigate the hippocampal involvement in cognitive dysfunction of PD, we generated an experimental model by inducing midbrain and hippocampal α-synuclein pathology simultaneously. METHODS: Rats were injected either with human α-synuclein or green fluorescent protein (GFP) expressing adeno-associated viral vectors (AAV), or saline bilaterally into substantia nigra (SN) and dentate gyrus (DG). A group of untreated animals were used as naïve controls. Cognitive and behavioral changes were evaluated with tests probing for spatial learning, short-term memory, anxiety and hedonistic behavior. Immunohistochemical staining, immunoblotting and stereological analysis were performed for pathological characterization. RESULTS: Bilateral α-synuclein overexpression in SN and DG led to mild but significant motor impairment as well as dysfunctions in short-term memory and spatial learning. There was no hedonistic deficit, whereas a hypo-anxious state was induced. While stereological analysis revealed no significant neuronal loss in any sectors of cornu ammonis, there was considerable decrease (43%) in TH+-neurons in SN pars compacta supporting the well-known vulnerability of nigral dopaminergic neurons to α-synuclein mediated neurodegeneration. On the other hand, synaptophysin levels decreased in similar amounts both in striatum and hippocampus, suggesting comparable synaptic loss in target areas. Interestingly, phosphorylated-S129-α-synuclein staining revealed significant expression in CA2 characterized by more mature and dense cellular accumulations compared to CA1-CA3 sub-regions displaying more diffuse grain-like aggregates, suggesting preferential susceptibility of CA2 to produce α-synuclein induced pathology. CONCLUSION: Bilateral α-synuclein overexpression in DG and SN reproduced partial motor and hippocampus related cognitive deficits. Using this model, we showed a predisposition of CA2 for pathological α-synuclein accumulation, which may provide further insights for future experimental and clinical studies.


Asunto(s)
Región CA2 Hipocampal/patología , Disfunción Cognitiva , Modelos Animales de Enfermedad , Enfermedad de Parkinson/patología , alfa-Sinucleína/toxicidad , Animales , Giro Dentado/patología , Femenino , Humanos , Ratas , Ratas Sprague-Dawley , Sustancia Negra/patología
12.
J Clin Invest ; 129(9): 3738-3753, 2019 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-31194700

RESUMEN

Specific neuronal populations display high vulnerability to pathological processes in Parkinson's disease (PD). The dorsal motor nucleus of the vagus nerve (DMnX) is a primary site of pathological α-synuclein deposition and may play a key role in the spreading of α-synuclein lesions within and outside the CNS. Using in vivo models, we show that cholinergic neurons forming this nucleus are particularly susceptible to oxidative challenges and accumulation of reactive oxidative species (ROS). Targeted α-synuclein overexpression within these neurons triggered an oxidative stress that became significantly more pronounced after exposure to the ROS-generating agent paraquat. A more severe oxidative stress resulted in enhanced production of oxidatively modified forms of α-synuclein, increased α-synuclein aggregation into oligomeric species and marked degeneration of DMnX neurons. Enhanced oxidative stress also affected neuron-to-neuron protein transfer, causing an increased spreading of α-synuclein from the DMnX toward more rostral brain regions. In vitro experiments confirmed a greater propensity of α-synuclein to pass from cell to cell under pro-oxidant conditions, and identified nitrated α-synuclein forms as highly transferable protein species. These findings substantiate the relevance of oxidative injury in PD pathogenetic processes, establish a relationship between oxidative stress and vulnerability to α-synuclein pathology and define a new mechanism, enhanced cell-to-cell α-synuclein transmission, by which oxidative stress could promote PD development and progression.


Asunto(s)
Neuronas/metabolismo , Estrés Oxidativo , Enfermedad de Parkinson/metabolismo , Nervio Vago/metabolismo , alfa-Sinucleína/metabolismo , Animales , Axones/metabolismo , Encéfalo/metabolismo , Núcleo Celular/metabolismo , Progresión de la Enfermedad , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Oxidantes/química , Oxígeno/metabolismo , Paraquat/farmacología , Enfermedad de Parkinson/patología , Especies Reactivas de Oxígeno/metabolismo
13.
Open Biol ; 8(11)2018 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-30404819

RESUMEN

Mutations in PINK1 and Parkin result in autosomal recessive Parkinson's disease (PD). Cell culture and in vitro studies have elaborated the PINK1-dependent regulation of Parkin and defined how this dyad orchestrates the elimination of damaged mitochondria via mitophagy. PINK1 phosphorylates ubiquitin at serine 65 (Ser65) and Parkin at an equivalent Ser65 residue located within its N-terminal ubiquitin-like domain, resulting in activation; however, the physiological significance of Parkin Ser65 phosphorylation in vivo in mammals remains unknown. To address this, we generated a Parkin Ser65Ala (S65A) knock-in mouse model. We observe endogenous Parkin Ser65 phosphorylation and activation in mature primary neurons following mitochondrial depolarization and reveal this is disrupted in ParkinS65A/S65A neurons. Phenotypically, ParkinS65A/S65A mice exhibit selective motor dysfunction in the absence of any overt neurodegeneration or alterations in nigrostriatal mitophagy. The clinical relevance of our findings is substantiated by the discovery of homozygous PARKIN (PARK2) p.S65N mutations in two unrelated patients with PD. Moreover, biochemical and structural analysis demonstrates that the ParkinS65N/S65N mutant is pathogenic and cannot be activated by PINK1. Our findings highlight the central role of Parkin Ser65 phosphorylation in health and disease.


Asunto(s)
Mitocondrias/metabolismo , Mitofagia , Enfermedad de Parkinson/metabolismo , Proteínas Quinasas/metabolismo , Ubiquitina-Proteína Ligasas , Animales , Humanos , Ratones , Ratones Transgénicos , Mitocondrias/genética , Mitocondrias/patología , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/patología , Fosforilación/genética , Proteínas Quinasas/genética , Serina/genética , Serina/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo
14.
Nat Commun ; 9(1): 3465, 2018 08 27.
Artículo en Inglés | MEDLINE | ID: mdl-30150626

RESUMEN

Propagation of α-synuclein aggregates has been suggested as a contributing factor in Parkinson's disease (PD) progression. However, the molecular mechanisms underlying α-synuclein aggregation are not fully understood. Here, we demonstrate in cell culture, nematode, and rodent models of PD that leucine-rich repeat kinase 2 (LRRK2), a PD-linked kinase, modulates α-synuclein propagation in a kinase activity-dependent manner. The PD-linked G2019S mutation in LRRK2, which increases kinase activity, enhances propagation efficiency. Furthermore, we show that the role of LRRK2 in α-synuclein propagation is mediated by RAB35 phosphorylation. Constitutive activation of RAB35 overrides the reduced α-synuclein propagation phenotype in lrk-1 mutant C. elegans. Finally, in a mouse model of synucleinopathy, administration of an LRRK2 kinase inhibitor reduced α-synuclein aggregation via enhanced interaction of α-synuclein with the lysosomal degradation pathway. These results suggest that LRRK2-mediated RAB35 phosphorylation is a potential therapeutic target for modifying disease progression.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/metabolismo , Plásmidos/genética , alfa-Sinucleína/metabolismo , Proteínas de Unión al GTP rab/metabolismo , Animales , Western Blotting , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Línea Celular Tumoral , Humanos , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/genética , Microscopía Fluorescente , Fosforilación , Ratas , alfa-Sinucleína/genética , Proteínas de Unión al GTP rab/genética
15.
Cell Death Dis ; 9(8): 818, 2018 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-30050065

RESUMEN

The involvement of DNA damage and repair in aging processes is well established. Aging is an unequivocal risk factor for chronic neurodegenerative diseases, underscoring the relevance of investigations into the role that DNA alterations may have in the pathogenesis of these diseases. Consistently, even moderate impairment of DNA repair systems facilitates the onset of pathological features typical of PD that include derangement of the dopaminergic system, mitochondrial dysfunction, and alpha-synuclein stress. The latter establishes a connection between reduced DNA repair capacity and a cardinal feature of PD, alpha-synuclein pathology. It remains to be determined, however, whether alpha-synuclein stress activates in vivo the canonical signaling cascade associated with DNA damage, which is centered on the kinase ATM and substrates such as γH2Ax and 53BP1. Addressing these issues would shed light on age-related mechanisms impinging upon PD pathogenesis and neurodegeneration in particular. We analyzed two different synucleinopathy PD mouse models based either on intranigral delivery of AAV-expressing human alpha-synuclein, or intrastriatal injection of human alpha-synuclein pre-formed fibrils. In both cases, we detected a significant increase in γH2AX and 53BP1 foci, and in phospho-ATM immunoreactivity in dopaminergic neurons, which collectively indicate DNA damage and activation of the DNA damage response. Mechanistic experiments in cell cultures indicate that activation of the DNA damage response is caused, at least in part, by pro-oxidant species because it is prevented by exogenous or endogenous antioxidants, which also rescue mitochondrial anomalies caused by proteotoxic alpha-synuclein. These in vivo and in vitro findings reveal that the cellular stress mediated by alpha-synuclein-a pathological hallmark in PD-elicits DNA damage and activates the DNA damage response. The toxic cascade leading to DNA damage involves oxidant stress and mitochondrial dysfunction The data underscore the importance of DNA quality control for preservation of neuronal integrity and protection against neurodegenerative processes.


Asunto(s)
Reparación del ADN , Enfermedad de Parkinson/patología , Sustancia Negra/patología , alfa-Sinucleína/metabolismo , Animales , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Línea Celular Tumoral , Daño del ADN , Modelos Animales de Enfermedad , Neuronas Dopaminérgicas/metabolismo , Histonas/genética , Histonas/metabolismo , Humanos , Ratones , Ratones Endogámicos C57BL , Mitocondrias/metabolismo , Enfermedad de Parkinson/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Sustancia Negra/metabolismo , Proteína 1 de Unión al Supresor Tumoral P53/genética , Proteína 1 de Unión al Supresor Tumoral P53/metabolismo , alfa-Sinucleína/genética
16.
Aging Cell ; 17(2)2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29383832

RESUMEN

Increased expression of α-synuclein can initiate its long-distance brain transfer, representing a potential mechanism for pathology spreading in age-related synucleinopathies, such as Parkinson's disease. In this study, the effects of overexpression-induced α-synuclein transfer were assessed over a 1-year period after injection of viral vectors carrying human α-synuclein DNA into the rat vagus nerve. This treatment causes targeted overexpression within neurons in the dorsal medulla oblongata and subsequent diffusion of the exogenous protein toward more rostral brain regions. Protein advancement and accumulation in pontine, midbrain, and forebrain areas were contingent upon continuous overexpression, because death of transduced medullary neurons resulted in cessation of spreading. Lack of sustained spreading did not prevent the development of long-lasting pathological changes. Particularly remarkable were findings in the locus coeruleus, a pontine nucleus with direct connections to the dorsal medulla oblongata and greatly affected by overexpression-induced transfer in this model. Data revealed progressive degeneration of catecholaminergic neurons that proceeded long beyond the time of spreading cessation. Neuronal pathology in the locus coeruleus was accompanied by pronounced microglial activation and, at later times, astrocytosis. Interestingly, microglial activation was also featured in another region reached by α-synuclein transfer, the central amygdala, even in the absence of frank neurodegeneration. Thus, overexpression-induced spreading, even if temporary, causes long-lasting pathological consequences in brain regions distant from the site of overexpression but anatomically connected to it. Neurodegeneration may be a consequence of severe protein burden, whereas even a milder α-synuclein accumulation in tissues affected by protein transfer could induce sustained microglial activation.


Asunto(s)
Encéfalo/fisiopatología , Enfermedad de Parkinson/genética , alfa-Sinucleína/metabolismo , Animales , Modelos Animales de Enfermedad , Humanos , Masculino , Enfermedad de Parkinson/patología , Ratas
17.
Cell Tissue Res ; 373(1): 183-193, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-29185072

RESUMEN

The abnormal accumulation of α-synuclein aggregates in neurons, nerve fibers, or glial cells is the hallmark of a group of neurodegenerative diseases known collectively as α-synucleinopathies. Clinical, neuropathological, and experimental evidence strongly suggests that α-synuclein plays a role not only as a trigger of pathological processes at disease inception, but also as a mediator of pathological spreading during disease progression. Specific properties of α-synuclein, such as its ability to pass from one neuron to another, its tendency to aggregate, and its potential to generate self-propagating species, have been described and elucidated in animal models and may contribute to the relentless exacerbation of Parkinson's disease pathology in patients. Animal models used for studying α-synuclein accumulation, aggregation, and propagation are mostly based on three approaches: (1) intra-parenchymal inoculations of exogenous α-synuclein (e.g., synthetic α-synuclein fibrils), (2) transgenic mice, and (3) animals (mice or rats) in which α-synuclein overexpression is induced by viral vector injections. Whereas pathological α-synuclein changes are consistently observed in these models, important differences are also found. In particular, pronounced pathology in transgenic mice and viral vector-injected animals does not appear to involve self-propagating α-synuclein species. A critical discussion of these models reveals their strengths and limitations and provides the basis for recommendations concerning their use for future investigations.


Asunto(s)
alfa-Sinucleína/metabolismo , Animales , Animales Modificados Genéticamente , Modelos Animales de Enfermedad , Vectores Genéticos/metabolismo , Humanos
18.
Acta Neuropathol ; 133(3): 381-393, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-28012041

RESUMEN

Detection of α-synuclein lesions in peripheral tissues is a feature of human synucleinopathies of likely pathogenetic relevance and bearing important clinical implications. Experiments were carried out to elucidate the relationship between α-synuclein accumulation in the brain and in peripheral organs, and to identify potential pathways involved in long-distance protein transfer. Results of this in vivo study revealed a route-specific transmission of α-synuclein from the rat brain to the stomach. Following targeted midbrain overexpression of human α-synuclein, the exogenous protein was capable of reaching the gastric wall where it was accumulated into preganglionic vagal terminals. This brain-to-stomach connection likely involved intra- and inter-neuronal transfer of non-fibrillar α-synuclein that first reached the medulla oblongata, then gained access into cholinergic neurons of the dorsal motor nucleus of the vagus nerve and finally traveled via efferent fibers of these neurons contained within the vagus nerve. Data also showed a particular propensity of vagal motor neurons and efferents to accrue α-synuclein and deliver it to peripheral tissues; indeed, following its midbrain overexpression, human α-synuclein was detected within gastric nerve endings of visceromotor but not viscerosensory vagal projections. Thus, the dorsal motor nucleus of the vagus nerve represents a key relay center for central-to-peripheral α-synuclein transmission, and efferent vagal fibers may act as unique conduits for protein transfer. The presence of α-synuclein in peripheral tissues could reflect, at least in some synucleinopathy patients, an ongoing pathological process that originates within the brain and, from there, reaches distant organs innervated by motor vagal projections.


Asunto(s)
Fibras Autónomas Preganglionares/metabolismo , Encéfalo/metabolismo , Mucosa Gástrica/metabolismo , Nervio Vago/metabolismo , alfa-Sinucleína/metabolismo , Animales , Encéfalo/citología , Colina O-Acetiltransferasa/metabolismo , Femenino , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Humanos , Neuronas/metabolismo , Ganglio Nudoso/metabolismo , ARN Mensajero/metabolismo , Ratas , Ratas Sprague-Dawley , Factores de Tiempo , Transducción Genética , Nervio Vago/fisiología , alfa-Sinucleína/genética
19.
Brain ; 139(Pt 3): 856-70, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26719384

RESUMEN

Aggregation and neuron-to-neuron transmission are attributes of α-synuclein relevant to its pathogenetic role in human synucleinopathies such as Parkinson's disease. Intraparenchymal injections of fibrillar α-synuclein trigger widespread propagation of amyloidogenic protein species via mechanisms that require expression of endogenous α-synuclein and, possibly, its structural corruption by misfolded conformers acting as pathological seeds. Here we describe another paradigm of long-distance brain diffusion of α-synuclein that involves inter-neuronal transfer of monomeric and/or oligomeric species and is independent of recruitment of the endogenous protein. Targeted expression of human α-synuclein was induced in the mouse medulla oblongata through an injection of viral vectors into the vagus nerve. Enhanced levels of intra-neuronal α-synuclein were sufficient to initiate its caudo-rostral diffusion that likely involved at least one synaptic transfer and progressively reached specific brain regions such as the locus coeruleus, dorsal raphae and amygdala in the pons, midbrain and forebrain. Transfer of human α-synuclein was compared in two separate lines of α-synuclein-deficient mice versus their respective wild-type controls and, interestingly, lack of endogenous α-synuclein expression did not counteract diffusion but actually resulted in a more pronounced and advanced propagation of exogenous α-synuclein. Self-interaction of adjacent molecules of human α-synuclein was detected in both wild-type and mutant mice. In the former, interaction of human α-synuclein with mouse α-synuclein was also observed and might have contributed to differences in protein transmission. In wild-type and α-synuclein-deficient mice, accumulation of human α-synuclein within recipient axons in the pons, midbrain and forebrain caused morphological evidence of neuritic pathology. Tissue sections from the medulla oblongata and pons were stained with different antibodies recognizing oligomeric, fibrillar and/or total (monomeric and aggregated) α-synuclein. Following viral vector transduction, monomeric, oligomeric and fibrillar protein was detected within donor neurons in the medulla oblongata. In contrast, recipient axons in the pons were devoid of immunoreactivity for fibrillar α-synuclein, indicating that non-fibrillar forms of α-synuclein were primarily transferred from one neuron to the other, diffused within the brain and led to initial neuronal injury. This study elucidates a paradigm of α-synuclein propagation that may play a particularly important role under pathophysiological conditions associated with enhanced α-synuclein expression. Rapid long-distance diffusion and accumulation of monomeric and oligomeric α-synuclein does not necessarily involve pathological seeding but could still result in a significant neuronal burden during the pathogenesis of neurodegenerative diseases.


Asunto(s)
Encéfalo/metabolismo , alfa-Sinucleína/biosíntesis , Animales , Encéfalo/patología , Femenino , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , alfa-Sinucleína/deficiencia , alfa-Sinucleína/genética
20.
Acta Neuropathol Commun ; 3: 13, 2015 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-25853980

RESUMEN

INTRODUCTION: Interneuronal propagation of α-synuclein has been demonstrated in a variety of experimental models and may be involved in disease progression during the course of human synucleinopathies. The aim of this study was to assess the role that neuronal injury or, vice versa, cell integrity could have in facilitating interneuronal α-synuclein transfer and consequent protein spreading in an in vivo animal model. RESULTS: Viral vectors carrying the DNA for human α-synuclein were injected into the rat vagus nerve to trigger protein overexpression in the medulla oblongata and consequent spreading of human α-synuclein toward pons, midbrain and forebrain. Two vector preparations sharing the same viral construct were manufactured using identical procedures with the exception of methods for their purification. They were also injected at concentrations that induced comparable levels of α-synuclein transduction/overexpression in the medulla oblongata. α-Synuclein load was associated with damage (at 6 weeks post injection) and death (at 12 weeks) of medullary neurons after treatment with only one of the two vector preparations. Of note, neuronal injury and degeneration was accompanied by a substantial reduction of caudo-rostral propagation of human α-synuclein. CONCLUSIONS: Interneuronal α-synuclein transfer, which underlies protein spreading from the medulla oblongata to more rostral brain regions in this rat model, is not a mere consequence of passive release from damaged or dead neurons. Neuronal injury and degeneration did not exacerbate α-synuclein propagation. In fact, data suggest that cell-to-cell passage of α-synuclein may be particularly efficient between intact, relatively healthy neurons.


Asunto(s)
Encéfalo/metabolismo , Degeneración Nerviosa/patología , Vías Nerviosas/metabolismo , Neuronas/patología , alfa-Sinucleína/metabolismo , Animales , Modelos Animales de Enfermedad , Femenino , Técnicas de Transferencia de Gen , Humanos , Bulbo Raquídeo/metabolismo , Degeneración Nerviosa/metabolismo , Vías Nerviosas/patología , Neuronas/metabolismo , Enfermedad de Parkinson/metabolismo , Ratas , Ratas Sprague-Dawley
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA