Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Front Plant Sci ; 13: 1027688, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36618614

RESUMEN

The plant hormone gibberellic acid (GA) is important for plant growth and productivity. Actin-related proteins (ARPs) also play central roles in plant growth, including cell elongation and development. However, the relationships between ARPs and GA signaling and biosynthesis are not fully understood. Here, we isolated OsGASD, encoding an ARP subunit from rice (Oryza sativa), using the Ac/Ds knockout system. The osgasd knockout (Ko) mutation reduced GA3 content in shoots as well as plant growth and height. However, GA application restored the plant height of the osgasd Ko mutant to a height similar to that of the wild type (WT). Rice plants overexpressing OsGASD (Ox) showed increased plant height and grain yield compared to the WT. Transcriptome analysis of flag leaves of OsGASD Ox and osgasd Ko plants revealed that OsGASD regulates cell development and the expression of elongation-related genes. These observations suggest that OsGASD is involved in maintaining GA homeostasis to regulate plant development, thereby affecting rice growth and productivity.

2.
Plant Signal Behav ; 16(2): 1849490, 2021 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-33300429

RESUMEN

Height and leaf morphology are important agronomic traits of the major crop plant rice (Oryza sativa). In previous studies, the dwarf and narrow leaf genes (dnl1, dnl2 and dnl3) have identified in rice. Using the Ac/Ds knockout system, we found a new dwarf and narrow leaf (dnl) mutant and identified mutated gene. The dnl-4 mutant showed reduced plant height and leaf blade width compared to the wild type, and increased leaf inclination. The morphological defects of the mutant were caused by the suppressed expression of the DNL-4 gene, which encodes a pfkB carbohydrate kinase protein. These results suggest that DNL-4 expression is involved in modulating plant height and leaf growth. Furthermore, DNL-4 expression also affects productivity in rice: the dnl-4 mutant exhibited reduced panicle length and grain width compared with the wild type. To understand DNL-4 function in rice, we analyzed the expression levels of leaf growth-related genes, such as NAL1, NAL7, and CSLD4, in the dnl-4 mutant. Expression of NAL1 and NAL7 was downregulated in the dnl-4 mutant compared to the wild type. The observation that DNL-4 expression corresponded with that of NAL1 and NAL7 is consistent with the narrow leaf phenotype of the dnl-4 mutant. These results suggest that DNL-4 regulates plant height and leaf structure in rice.


Asunto(s)
Oryza/metabolismo , Hojas de la Planta/metabolismo , Proteínas de Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas/genética , Regulación de la Expresión Génica de las Plantas/fisiología , Oryza/genética , Hojas de la Planta/genética , Hojas de la Planta/fisiología , Proteínas de Plantas/genética
3.
Front Plant Sci ; 9: 1866, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30619427

RESUMEN

The jasmonic acid (JA) and gibberellic acid (GA) signaling pathways interact to coordinate stress responses and developmental processes. This coordination affects plant growth and yield, and is mediated by interactions between the repressors of each pathway, the JASMONATE ZIM-DOMAIN PROTEIN (JAZ) and DELLA proteins. In this study we attempted to identify rice (Oryza sativa) JAZs that interact with rice DELLAs such as SLENDER RICE 1 (SLR1). Analysis of protein-protein interactions showed that OsJAZ8 and OsJAZ9 interact with SLR1; OsJAZ9 also interacted with the SLR1-LIKE (SLRL) protein SLRL2. Based on this broader interaction, we explored the function of OsJAZ9 in JA and GA responses by analyzing transcript levels of the JA-responsive gene OsbHLH148 and the GA-responsive gene OsPIL14 in OsJAZ9-overexpressing (OsJAZ9-Ox) and osjaz9 mutant plants. OsbHLH148 and OsPIL14 encode key transcription factors controlling JA and GA responses, respectively, and JA and GA antagonistically regulate their expression. In OsJAZ9-Ox, the expression of OsbHLH148 was downregulated and the expression of OsPIL14 was upregulated. By contrast, in osjaz9 mutants, the expression of OsbHLH148 was upregulated and the expression of OsPIL14 was downregulated. These observations indicated that OsJAZ9 regulates both JA and GA responses in rice, and this finding was supported by the opposite expression patterns of OsDREB1s, downstream targets of OsbHLH148 and OsPIL14, in the OsJAZ9-Ox and osjaz9 plants. Together, these findings indicate that OsJAZ9 suppresses JA responses and promotes GA responses in rice, and the protein-protein interaction between OsJAZ9 and SLR1 is involved in the antagonistic interplay between JA and GA.

4.
Sci Rep ; 7(1): 10212, 2017 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-28860478

RESUMEN

Developmental flexibility under stress conditions largely relies on the interactions between hormones that mediate stress responses and developmental processes. In this study, we showed that the stress hormone jasmonic acid (JA) induces formation of extra xylem in the roots of wild-type Arabidopsis thaliana (Col-0). JA signaling mutants such as coronatine insensitive1-1 and jasmonate resistant1-1 did not form extra xylem in response to JA, but the JA biosynthesis mutant oxophytodienoate-reductase3 did form extra xylem. These observations suggested that the JA response promotes xylem development. To understand the mechanism, we examined the regulatory interaction between JA and cytokinin, a negative regulator of xylem development. JA treatment reduced cytokinin responses in the vasculature, and exogenous cytokinin nullified the effect of JA on formation of extra xylem. A time-course experiment showed that suppression of cytokinin responses by JA does not occur rapidly, but the JA-mediated xylem phenotype is tightly linked to the suppression of the cytokinin response. Further analysis of arabidopsis histidine phosphotransfer protein6-1 and myc2-3 mutants revealed that the JA-responsive transcription factor MYC2 regulates the expression of AHP6 in response to JA and expression of AHP6 is involved in the JA-mediated xylem phenotype.


Asunto(s)
Arabidopsis/citología , Ciclopentanos/farmacología , Citocininas/farmacología , Oxilipinas/farmacología , Xilema/crecimiento & desarrollo , Arabidopsis/efectos de los fármacos , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/genética , Antagonismo de Drogas , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Mutación , Fenotipo , Raíces de Plantas/citología , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/genética , Estrés Fisiológico , Xilema/efectos de los fármacos
5.
Plant Physiol ; 174(1): 435-449, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28336770

RESUMEN

Regulation of photosynthetic gene expression by plastid-encoded RNA polymerase (PEP) is essential for chloroplast development. The activity of PEP largely relies on at least 12 PEP-associated proteins (PAPs) encoded in the nuclear genome of plant cells. A recent model proposed that these PAPs regulate the establishment of the PEP complex through broad PAP-PEP or PAP-PAP interactions. In this study, we identified the Arabidopsis (Arabidopsis thaliana) seedling-lethal mutant ptac10-1, which has defects in chloroplast development, and found that the mutant phenotype is caused by the suppression of PLASTID S1 RNA-BINDING DOMAIN PROTEIN (pTAC10/PAP3). Analysis of the heterozygous mutant and pTAC10-overexpressing transgenic plants indicated that the expression level of pTAC10 is tightly linked to chloroplast development. Characterization of the interaction of pTAC10 with PAPs revealed that pTAC10 interacts with other PAPs, such as FSD2, FSD3, TrxZ, pTAC7, and pTAC14, but it does not interact with PEP core enzymes, such as rpoA and rpoB. Analysis of pTAC10 interactions using truncated pTAC10 proteins showed that the pTAC10 carboxyl-terminal region downstream of the S1 domain is involved in the pTAC10-PAP interaction. Furthermore, overexpression of truncated pTAC10s lacking the C-terminal regions downstream of the S1 domain could not rescue the ptac10-1 mutant phenotype and induced an abnormal whitening phenotype in Columbia-0 plants. Our observations suggested that these pTAC10-PAP interactions are essential for the formation of the PEP complex and chloroplast development.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas de Cloroplastos/metabolismo , Cloroplastos/metabolismo , ARN Polimerasas Dirigidas por ADN/metabolismo , Plastidios/enzimología , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Cloroplastos/genética , Cloroplastos/ultraestructura , ARN Polimerasas Dirigidas por ADN/genética , Perfilación de la Expresión Génica/métodos , Regulación de la Expresión Génica de las Plantas , Microscopía Electrónica de Transmisión , Mutación , Plantas Modificadas Genéticamente , Unión Proteica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...