Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Cytokine ; 176: 156535, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38325141

RESUMEN

Increasing evidence suggests the oncogenic role of missense mutation (AKT1-E17K) of AKT1 gene in meningiomas. Upon investigating the connection between the pro-tumorigenic role of AKT1-E17K and cellular metabolic adaptations, elevated levels of glycolytic enzyme hexokinase 2 (HK2) was observed in meningioma patients with AKT1-E17K compared to patients harboring wild-type AKT1. In vitro experiments also suggested higher HK2 levels and its activity in AKT1-E17K cells. Treatment with the conventional drug of choice AZD5363 (a pan AKT inhibitor) enhanced cell death and diminished HK2 levels in AKT1 mutants. Given the role of AKT phosphorylation in eliciting inflammatory responses, we observed increased levels of inflammatory mediators (IL-1ß, IL6, IL8, and TLR4) in AKT1-E17K cells compared to AKT1-WT cells. Treatment with AKT or HK2 inhibitors dampened the heightened levels of inflammatory markers in AKT1-E17K cells. As AKT and HK2 regulates redox homeostasis, diminished ROS generation concomitant with increased levels of NF-E2- related factor 2 (Nrf2) and superoxide dismutase 1 (SOD1) were observed in AKT1-E17K cells. Increased sensitivity of AKT1-E17K cells to AZD5363 in the presence of HK2 inhibitor Lonidamine was reversed upon treatment with ROS inhibitor NAC. By affecting metabolism, inflammation, and redox homeostasis AKT1-E17K confers a survival advantage in meningioma cells. Our findings suggest that targeting AKT-HK2 cross-talk to induce ROS-dependent cell death could be exploited as novel therapeutic approach in meningiomas.


Asunto(s)
Neoplasias Meníngeas , Meningioma , Humanos , Mutación con Ganancia de Función , Hexoquinasa/genética , Hexoquinasa/metabolismo , Neoplasias Meníngeas/genética , Meningioma/genética , Estrés Oxidativo/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Especies Reactivas de Oxígeno
2.
Autophagy ; 19(7): 1997-2014, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36647288

RESUMEN

Mutations in the Krebs cycle enzyme IDH1 (isocitrate dehydrogenase (NADP(+)) 1) are associated with better prognosis in gliomas. Though IDH1 mutant (IDH1R132H) tumors are characterized by their antiproliferative signatures maintained through hypermethylation of DNA and chromatin, mechanisms affecting cell death pathways in these tumors are not well elucidated. On investigating the crosstalk between the IDH1 mutant epigenome, ferritinophagy and inflammation, diminished expression of PRMT1 (protein arginine methyltransferase 1) and its associated asymmetric dimethyl epigenetic mark H4R3me2a was observed in IDH1R132H gliomas. Reduced expression of PRMT1 was concurrent with diminished levels of PTX3, a key secretory factor involved in cancer-related inflammation. Lack of PRMT1 H4R3me2a in IDH1 mutant glioma failed to epigenetically activate the expression of PTX3 with a reduction in YY1 (YY1 transcription factor) binding on its promoter. Transcriptional activation and subsequent secretion of PTX3 from cells was required for maintaining macroautophagic/autophagic balance as pharmacological or genetic ablation of PTX3 secretion in wild-type IDH1 significantly increased autophagic flux. Additionally, PTX3-deficient IDH1 mutant gliomas exhibited heightened autophagic signatures. Furthermore, we demonstrate that the PRMT1-PTX3 axis is important in regulating the levels of ferritin genes/iron storage and inhibition of this axis triggered ferritinophagic flux. This study highlights the conserved role of IDH1 mutants in augmenting ferritinophagic flux in gliomas irrespective of genetic landscape through inhibition of the PRMT1-PTX3 axis. This is the first study describing ferritinophagy in IDH1 mutant gliomas with mechanistic details. Of clinical importance, our study suggests that the PRMT1-PTX3 ferritinophagy regulatory circuit could be exploited for therapeutic gains.Abbreviations: 2-HG: D-2-hydroxyglutarate; BafA1: bafilomycin A1; ChIP: chromatin immunoprecipitation; FTH1: ferritin heavy chain 1; FTL: ferritin light chain; GBM: glioblastoma; HMOX1/HO-1: heme oxygenase 1; IHC: immunohistochemistry; IDH1: isocitrate dehydrogenase(NADP(+))1; MDC: monodansylcadaverine; NCOA4: nuclear receptor coactivator 4; NFE2L2/Nrf2: NFE2 like bZIP transcription factor 2; PTX3/TSG-14: pentraxin 3; PRMT: protein arginine methyltransferase; SLC40A1: solute carrier family 40 member 1; Tan IIA: tanshinone IIA; TCA: trichloroacetic acid; TEM: transmission electron microscopy; TNF: tumor necrosis factor.


Asunto(s)
Neoplasias Encefálicas , Glioma , Humanos , Isocitrato Deshidrogenasa/genética , Isocitrato Deshidrogenasa/metabolismo , Isocitrato Deshidrogenasa/uso terapéutico , Proteína-Arginina N-Metiltransferasas/genética , NADP , Autofagia/genética , Glioma/patología , Mutación/genética , Factor de Transcripción YY1 , Neoplasias Encefálicas/patología , Proteínas Represoras/genética
3.
Neurochem Int ; 150: 105189, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34543701

RESUMEN

Increasing evidences suggest that the SWI/SNF chromatin remodeling complex involved in the organization of chromatin architecture via ATP hydrolysis, plays an important role in human cancer. As TCGA gene expression analyses revealed signature of enhanced oxidative stress in GBMs harbouring Brg1mutations, we examined the involvement of ATPase subunit of BRG1 in regulating oxidative stress responses in glioma. BRG1-MUT overexpressing glioma cells exhibit intrinsically higher reactive oxygen species (ROS) levels as compared to BRG1-WT. Elevated ROS generation was concomitant with decreased expression of NF-E2- related factor 2 (NRF2), superoxide dismutases (SOD-1,2) and thioredoxins (TrX-1,2). A similar change in redox regulatory genes and ROS production was observed upon siRNA-mediated knockdown of Brg1. Increased sensitivity to temozolomide was observed upon loss of BRG1-ATPase catalytic domain. These findings highlight the role of ATPase domain of BRG1 in regulating redox homeostasis and sensitivity to oxidative stressors in glioma cells. BRG1 mutation created vulnerability to elevated ROS levels can be therapeutically exploited, with ROS stressors as a promising therapeutic target for the treatment of BRG1-mutant cancers.


Asunto(s)
Neoplasias Encefálicas/genética , ADN Helicasas/genética , Glioblastoma/genética , Mutación/genética , Proteínas Nucleares/genética , Estrés Oxidativo/genética , Factores de Transcripción/genética , Encéfalo/metabolismo , Encéfalo/patología , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patología , Línea Celular Tumoral , ADN Helicasas/metabolismo , Glioblastoma/metabolismo , Glioblastoma/patología , Humanos , Proteínas Nucleares/metabolismo , Factores de Transcripción/metabolismo
4.
Mol Cell Biol ; 41(9): e0044920, 2021 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-34124933

RESUMEN

A desynchronized circadian rhythm in tumors is coincident with aberrant inflammation and dysregulated metabolism. As their interrelationship in cancer etiology is largely unknown, we investigated the link among the three in glioma. The tumor metabolite lactate-mediated increase in the proinflammatory cytokine interleukin-1ß (IL-1ß) was concomitant with elevated levels of the core circadian regulators Clock and Bmal1. Small interfering RNA (siRNA)-mediated knockdown of Bmal1 and Clock decreased (i) lactate dehydrogenase A (LDHA) and IL-1ß levels and (ii) the release of lactate and proinflammatory cytokines. Lactate-mediated deacetylation of Bmal1 and its interaction with Clock regulate IL-1ß levels and vice versa. Site-directed mutagenesis and luciferase reporter assays indicated the functionality of E-box sites on LDHA and IL-1ß promoters. Sequential chromatin immunoprecipitation (ChIP-re-ChIP) revealed that lactate-IL-1ß cross talk positively affects the corecruitment of Clock-Bmal1 to these E-box sites. Clock-Bmal1 enrichment was accompanied by decreased H3K9me3 and increased H3K9ac and RNA polymerase II (Pol II) occupancy. The lactate-IL-1ß-Clock (LIC) loop positively regulated the expression of genes associated with the cell cycle, DNA damage, and cytoskeletal organization involved in glioma progression. TCGA (The Cancer Genome Atlas) data analysis suggested the presence of lactate-IL-1ß cross talk in other cancers. The responsiveness of stomach and cervical cancer cells to lactate inhibition followed the same trend as that exhibited by glioma cells. In addition, components of the LIC loop were found to be correlated with (i) patient survival, (ii) clinically actionable genes, and (iii) anticancer drug sensitivity. Our findings provide evidence for potential cancer-specific axis wiring of IL-1ß and LDHA through Clock-Bmal1, the outcome of which is to fuel an IL-1ß-lactate autocrine loop that drives proinflammatory and oncogenic signals.


Asunto(s)
Factores de Transcripción ARNTL/metabolismo , Relojes Circadianos , Glioma/metabolismo , Homeostasis , Interleucina-1beta/metabolismo , Ácido Láctico/metabolismo , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Línea Celular Tumoral , Relojes Circadianos/efectos de los fármacos , Relojes Circadianos/genética , Citocinas/metabolismo , Progresión de la Enfermedad , Elementos E-Box/genética , Epigénesis Genética/efectos de los fármacos , Redes Reguladoras de Genes/efectos de los fármacos , Glioma/tratamiento farmacológico , Glioma/genética , Glioma/patología , Homeostasis/efectos de los fármacos , Humanos , Mediadores de Inflamación/metabolismo , Interleucina-1beta/genética , Lactato Deshidrogenasa 5/genética , Lactato Deshidrogenasa 5/metabolismo , Regiones Promotoras Genéticas , Análisis de Supervivencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...