Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 120(45): e2301534120, 2023 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-37903257

RESUMEN

L-type voltage-gated calcium (Ca2+) channels (L-VGCC) dysfunction is implicated in several neurological and psychiatric diseases. While a popular therapeutic target, it is unknown whether molecular mechanisms leading to disrupted L-VGCC across neurodegenerative disorders are conserved. Importantly, L-VGCC integrate synaptic signals to facilitate a plethora of cellular mechanisms; however, mechanisms that regulate L-VGCC channel density and subcellular compartmentalization are understudied. Herein, we report that in disease models with overactive mammalian target of rapamycin complex 1 (mTORC1) signaling (or mTORopathies), deficits in dendritic L-VGCC activity are associated with increased expression of the RNA-binding protein (RBP) Parkinsonism-associated deglycase (DJ-1). DJ-1 binds the mRNA coding for the alpha and auxiliary Ca2+ channel subunits CaV1.2 and α2δ2, and represses their mRNA translation, only in the disease states, specifically preclinical models of tuberous sclerosis complex (TSC) and Alzheimer's disease (AD). In agreement, DJ-1-mediated repression of CaV1.2/α2δ2 protein synthesis in dendrites is exaggerated in mouse models of AD and TSC, resulting in deficits in dendritic L-VGCC calcium activity. Finding of DJ-1-regulated L-VGCC activity in dendrites in TSC and AD provides a unique signaling pathway that can be targeted in clinical mTORopathies.


Asunto(s)
Enfermedad de Alzheimer , Esclerosis Tuberosa , Animales , Ratones , Enfermedad de Alzheimer/genética , Calcio/metabolismo , Canales de Calcio Tipo L/genética , Canales de Calcio Tipo L/metabolismo , Dendritas/metabolismo , Mamíferos/metabolismo , Esclerosis Tuberosa/genética
2.
Mol Psychiatry ; 26(6): 2350-2362, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33432187

RESUMEN

Rapid antidepressants are novel treatments for major depressive disorder (MDD) and work by blocking N-methyl-D-aspartate receptors (NMDARs), which, in turn, activate the protein synthesis pathway regulated by mechanistic/mammalian target of rapamycin complex 1 (mTORC1). Our recent work demonstrates that the RNA-binding protein Fragile X Mental Retardation Protein (FMRP) is downregulated in dendrites upon treatment with a rapid antidepressant. Here, we show that the behavioral effects of the rapid antidepressant Ro-25-6981 require FMRP expression, and treatment promotes differential mRNA binding to FMRP in an mTORC1-dependent manner. Further, these mRNAs are identified to regulate transsynaptic signaling. Using a novel technique, we show that synapse formation underlying the behavioral effects of Ro-25-6981 requires GABABR-mediated mTORC1 activity in WT animals. Finally, we demonstrate that in an animal model that lacks FMRP expression and has clinical relevance for Fragile X Syndrome (FXS), GABABR activity is detrimental to the effects of Ro-25-6981. These effects are rescued with the combined therapy of blocking GABABRs and NMDARs, indicating that rapid antidepressants alone may not be an effective treatment for people with comorbid FXS and MDD.


Asunto(s)
Trastorno Depresivo Mayor , Síndrome del Cromosoma X Frágil , Animales , Antidepresivos/farmacología , Trastorno Depresivo Mayor/tratamiento farmacológico , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Síndrome del Cromosoma X Frágil/tratamiento farmacológico , Síndrome del Cromosoma X Frágil/genética , Humanos , Sinapsis
3.
Alcohol ; 91: 41-51, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33321179

RESUMEN

Early life stress is known to impact vulnerability to psychopathological disorders in adulthood, including anxiety and alcohol use disorder (AUD), but the mechanisms underlying susceptibility to these outcomes are not fully understood. In the current study, we used adolescent social isolation (ASI) to determine whether Heterogeneous Stock (HS) rats, an outbred model used for genetic fine-mapping, could be used to study the genetics contributing to ASI-induced anxiety- and AUD-like behavior. We isolated (ASI) or group-housed (adolescent group-housed; AGH) 64 male HS rats at 4 weeks of age. After 5 weeks in these housing conditions, multiple anxiety and coping/despair-like behaviors were measured. All rats were then individually housed and assessed for voluntary ethanol self-administration. At euthanasia, synaptoneurosomes were isolated from a subset of brains to examine the expression of two proteins associated with alcohol drinking-related behaviors, GluA1 and SK2, in the dorsal (dHC) and ventral hippocampus (vHC). We found that ASI increased hyperactivity in the open field test relative to AGH, with no changes in other anxiety-like behaviors. Surprisingly, ASI rats demonstrated decreased immobility and increased climbing in the forced swim test relative to AGH. In contrast to prior studies by us and others, we found no difference in self-administration of 20% ethanol, with decreased ethanol self-administration in ASI relative to AGH rats at higher ethanol concentrations. Furthermore, while ASI in Long-Evans rats resulted in decreased SK2 expression in vHC synaptosomes, no differences were seen in vHC synaptosomes for SK2 or GluA1 in HS rats. These results demonstrate that HS rats are protected against many of the negative effects previously seen in response to ASI, namely anxiety-like behavior and increased ethanol self-administration. The current work suggests that a lack of change in SK2 and GluA1 expression levels in the vHC may play a role in conferring this protection.


Asunto(s)
Consumo de Bebidas Alcohólicas , Ansiedad , Hipercinesia/psicología , Estrés Psicológico/complicaciones , Animales , Etanol , Masculino , Ratas , Ratas Long-Evans
4.
ACS Chem Neurosci ; 10(4): 2033-2044, 2019 04 17.
Artículo en Inglés | MEDLINE | ID: mdl-30284806

RESUMEN

Chronic peri-adolescent stress in humans increases risk to develop a substance use disorder during adulthood. Rats reared in social isolation during peri-adolescence (aSI; 1 rat/cage) period show greater ethanol and cocaine intake compared to group housed (aGH; 4 rats/cage) rats. In addition, aSI rats have a heightened dopamine response in the nucleus accumbens (NAc) to rewarding and aversive stimuli. Furthermore, single pulse electrical stimulation in slices containing NAc core elicits greater dopamine release in aSI rats. Here, we further investigated dopamine release kinetics and machinery following aSI. Dopamine release, across a wide range of stimulation intensities and frequencies, was significantly greater in aSI rats. Interestingly, subthreshold intensity stimulations also resulted in measurable dopamine release in accumbal slices from aSI but not aGH rats. Extracellular [Ca2+] manipulations revealed augmented calcium sensitivity of dopamine release in aSI rats. The readily releasable pools of dopamine, examined by bath application of Ro-04-1284/000, a vesicular monoamine transporter 2 (VMAT2) inhibitor, were depleted faster in aGH rats. Western blot analysis of release machinery proteins (VMAT2, Synaptogyrin-3, Syntaxin-1, and Munc13-3) showed no difference between the two groups. Tyrosine hydroxylase (TH) protein expression levels, however, were elevated in aSI rats. The greater dopamine release could potentially be explained by higher levels of TH, the rate-limiting step for dopamine synthesis. This augmented responsivity of the dopamine system and heightened dopamine availability post-aSI may lead to an increased risk of addiction vulnerability.


Asunto(s)
Dopamina/metabolismo , Núcleo Accumbens/metabolismo , Terminales Presinápticos/metabolismo , Aislamiento Social , Estrés Psicológico/metabolismo , Proteínas de Transporte Vesicular de Monoaminas/metabolismo , Factores de Edad , Animales , Enfermedad Crónica , Inhibidores de Captación de Dopamina/farmacología , Masculino , Núcleo Accumbens/efectos de los fármacos , Terminales Presinápticos/efectos de los fármacos , Ratas , Ratas Long-Evans , Aislamiento Social/psicología , Estrés Psicológico/psicología , Proteínas de Transporte Vesicular de Monoaminas/antagonistas & inhibidores
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA