Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
NPJ Aging ; 10(1): 2, 2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-38167419

RESUMEN

Nicotinamide adenine dinucleotide (NAD+) is an essential metabolite for fundamental biological phenomena, including aging. Nicotinamide mononucleotide (NMN) is a key NAD+ intermediate that has been extensively tested as an effective NAD+-boosting compound in mice and humans. However, the accurate measurement of NMN in biological samples has long been a challenge in the field. Here, we have established an accurate, quantitative methodology for measuring NMN by using liquid chromatography-triple quadrupole mass spectrometry (LC-MS/MS) with double isotopic NMN standards. In this new methodology, the matrix effects of biological samples were properly adjusted, and the fate of NMN could be traced during sample processing. We have demonstrated that this methodology can accurately quantitate NMN levels in mouse plasma and confirmed quick, direct NMN uptake into blood circulation and cells. This double isotope-mediated LC-MS/MS (dimeLC-MS/MS) can easily be expanded to other NAD+-related metabolites as a reliable standard methodology for NAD+ biology.

2.
Cell Rep ; 7(4): 1039-47, 2014 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-24794430

RESUMEN

The Fanconi anemia (FA) pathway is critically involved in the maintenance of hematopoietic stem cells and the suppression of carcinogenesis. A key FA protein, FANCD2, is monoubiquitinated and accumulates in chromatin in response to DNA interstrand crosslinks (ICLs), where it coordinates DNA repair through mechanisms that are still poorly understood. Here, we report that CtIP protein directly interacts with FANCD2. A region spanning amino acids 166 to 273 of CtIP and monoubiquitination of FANCD2 are both essential for the FANCD2-CtIP interaction and mitomycin C (MMC)-induced CtIP foci. Remarkably, both FANCD2 and CtIP are critical for MMC-induced RPA2 hyperphosphorylation, an event that accompanies end resection of double-strand breaks. Collectively, our results reveal a role of monoubiquitinated FANCD2 in end resection that depends on its binding to CtIP during ICL repair.


Asunto(s)
Proteínas Portadoras/genética , Proteína del Grupo de Complementación D2 de la Anemia de Fanconi/genética , Anemia de Fanconi/genética , Proteínas Nucleares/genética , Proteínas Portadoras/metabolismo , Reactivos de Enlaces Cruzados , Roturas del ADN de Doble Cadena , Daño del ADN , Reparación del ADN , Endodesoxirribonucleasas , Proteína del Grupo de Complementación D2 de la Anemia de Fanconi/metabolismo , Humanos , Proteínas Nucleares/metabolismo , Transfección
3.
Nucleic Acids Res ; 41(14): 6930-41, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23723247

RESUMEN

When DNA replication is stalled at sites of DNA damage, a cascade of responses is activated in the cell to halt cell cycle progression and promote DNA repair. A pathway initiated by the kinase Ataxia teleangiectasia and Rad3 related (ATR) and its partner ATR interacting protein (ATRIP) plays an important role in this response. The Fanconi anemia (FA) pathway is also activated following genomic stress, and defects in this pathway cause a cancer-prone hematologic disorder in humans. Little is known about how these two pathways are coordinated. We report here that following cellular exposure to DNA cross-linking damage, the FA core complex enhances binding and localization of ATRIP within damaged chromatin. In cells lacking the core complex, ATR-mediated phosphorylation of two functional response targets, ATRIP and FANCI, is defective. We also provide evidence that the canonical ATR activation pathway involving RAD17 and TOPBP1 is largely dispensable for the FA pathway activation. Indeed DT40 mutant cells lacking both RAD17 and FANCD2 were synergistically more sensitive to cisplatin compared with either single mutant. Collectively, these data reveal new aspects of the interplay between regulation of ATR-ATRIP kinase and activation of the FA pathway.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas de Ciclo Celular/metabolismo , Reparación del ADN , Proteínas de Unión al ADN/metabolismo , Proteínas del Grupo de Complementación de la Anemia de Fanconi/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Adaptadoras Transductoras de Señales/análisis , Animales , Proteínas de la Ataxia Telangiectasia Mutada , Proteínas de Ciclo Celular/fisiología , Línea Celular , Cromatina/química , Replicación del ADN , ADN de Cadena Simple/metabolismo , Proteínas de Unión al ADN/análisis , Proteínas de Unión al ADN/fisiología , Células HeLa , Humanos , Proteína de Replicación A/metabolismo
4.
Cancer Sci ; 104(6): 703-10, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23465063

RESUMEN

Stalled replication forks undergo DNA double-strand breaks (DSBs) under certain conditions. However, the precise mechanism underlying DSB induction and the cellular response to persistent replication fork stalling are not fully understood. Here we show that, in response to hydroxyurea exposure, DSBs are generated in an Artemis nuclease-dependent manner following prolonged stalling with subsequent activation of the ataxia-telangiectasia mutated (ATM) signaling pathway. The kinase activity of the catalytic subunit of the DNA-dependent protein kinase, a prerequisite for stimulation of the endonuclease activity of Artemis, is also required for DSB generation and subsequent ATM activation. Our findings indicate a novel function of Artemis as a molecular switch that converts stalled replication forks harboring single-stranded gap DNA lesions into DSBs, thereby activating the ATM signaling pathway following prolonged replication fork stalling.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Roturas del ADN de Doble Cadena , Proteínas de Unión al ADN/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Transducción de Señal/fisiología , Proteínas Supresoras de Tumor/metabolismo , Proteínas de la Ataxia Telangiectasia Mutada , Línea Celular Tumoral , Endonucleasas , Técnica del Anticuerpo Fluorescente , Humanos , Immunoblotting
5.
PLoS One ; 6(8): e23432, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21858116

RESUMEN

Normal cells, both in vivo and in vitro, become quiescent after serial cell proliferation. During this process, cells can develop immortality with genomic instability, although the mechanisms by which this is regulated are unclear. Here, we show that a growth-arrested cellular status is produced by the down-regulation of histone H2AX in normal cells. Normal mouse embryonic fibroblast cells preserve an H2AX diminished quiescent status through p53 regulation and stable-diploidy maintenance. However, such quiescence is abrogated under continuous growth stimulation, inducing DNA replication stress. Because DNA replication stress-associated lesions are cryptogenic and capable of mediating chromosome-bridge formation and cytokinesis failure, this results in tetraploidization. Arf/p53 module-mutation is induced during tetraploidization with the resulting H2AX recovery and immortality acquisition. Thus, although cellular homeostasis is preserved under quiescence with stable diploidy, tetraploidization induced under growth stimulation disrupts the homeostasis and triggers immortality acquisition.


Asunto(s)
Regulación hacia Abajo , Fibroblastos/metabolismo , Histonas/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Animales , Western Blotting , Línea Celular Transformada , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Senescencia Celular/efectos de los fármacos , Citotoxinas/farmacología , Diploidia , Embrión de Mamíferos/citología , Fibroblastos/citología , Fibroblastos/efectos de los fármacos , Expresión Génica/efectos de los fármacos , Inestabilidad Genómica , Histonas/genética , Ratones , Ratones Noqueados , Poliploidía , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Proteína p53 Supresora de Tumor/genética , Cinostatina/farmacología
6.
PLoS One ; 5(1): e8821, 2010 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-20098673

RESUMEN

During tumorigenesis, cells acquire immortality in association with the development of genomic instability. However, it is still elusive how genomic instability spontaneously generates during the process of tumorigenesis. Here, we show that precancerous DNA lesions induced by oncogene acceleration, which induce situations identical to the initial stages of cancer development, trigger tetraploidy/aneuploidy generation in association with mitotic aberration. Although oncogene acceleration primarily induces DNA replication stress and the resulting lesions in the S phase, these lesions are carried over into the M phase and cause cytokinesis failure and genomic instability. Unlike directly induced DNA double-strand breaks, DNA replication stress-associated lesions are cryptogenic and pass through cell-cycle checkpoints due to limited and ineffective activation of checkpoint factors. Furthermore, since damaged M-phase cells still progress in mitotic steps, these cells result in chromosomal mis-segregation, cytokinesis failure and the resulting tetraploidy generation. Thus, our results reveal a process of genomic instability generation triggered by precancerous DNA replication stress.


Asunto(s)
Daño del ADN , Replicación del ADN , Mitosis , Poliploidía , Animales , División Celular , Transformación Celular Neoplásica , Células Cultivadas , Ratones , Oncogenes , Fase S
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...