Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Chemosphere ; 325: 138296, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36898445

RESUMEN

The presence, bioconcentration, and health risk via seafood consumption of 11 pharmaceutical compounds belonging to different therapeutic groups (anti-inflammatory, antiepileptic, lipid regulators, and hormones) were investigated in the muscle tissues of fish and the meat of shrimp in the Sea of Marmara. Six biota species (Merlangius merlangus, Trachurus meditterraneus, Serranus hepatus, Pomatomus saltatrix, Parapenaeus longirostris, Spratus sprattus) were collected from the five stations in October and April 2019. Ultrasonic extraction method followed by solid phase extraction was used for extraction of pharmaceutical compounds from biota samples and then analyzed using high-performance liquid chromatography. Of the 11 compounds, 10 were detected in biota species. Ibuprofen was the most frequently detected pharmaceutical in the biota tissues at high concentrations (<3.0-1225 ng/g, dw). The other widely detected compounds were fenoprofen (<3.6-323 ng/g, dw), gemfibrozil (<3.2-480 ng/g, dw), 17α-ethynylestradiol (<2.0-462 ng/g, dw), and carbamazepine (<7.6-222 ng/g, dw). The bioconcentration factors of the selected pharmaceuticals calculated in various aquatic organisms ranged from 9 to 2324 L/kg. The estimated daily intakes of anti-inflammatories, antiepileptics, lipid regulators, and hormones via seafood consumption were 0.37-568, 1.1-324, 8.5-197, 3-340 ng/kg bw. Day, respectively. Based on hazard quotients, estrone, 17ß-estradiol, and 17α-ethynylestradiol may pose a health risk to humans through the consumption of this seafood.


Asunto(s)
Monitoreo del Ambiente , Contaminantes Químicos del Agua , Animales , Humanos , Monitoreo del Ambiente/métodos , Bioacumulación , Peces , Etinilestradiol/análisis , Biota , Preparaciones Farmacéuticas , Lípidos , Contaminantes Químicos del Agua/análisis
2.
Bioelectrochemistry ; 149: 108307, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36274516

RESUMEN

Desulfovibrio vulgaris biofilm was pre-grown on Ti coupons for 7 d and then the biofilm covered coupons were incubated again with fresh culture media with 10 % (reduced) and 100 % (normal) carbon source levels, respectively. After the pre-growth, sessile D. vulgaris cell count reached 107 cells/cm2. The sessile cell counts were 2 × 107 and 4.2 × 107 cells/cm2 for 10 % and 100 % carbon sources, respectively after the subsequent 7 d starvation test. The maximum pit depth after the 7 d pre-growth was 4.7 µm. After the additional 7 d of the starvation test, the maximum pit depth increased to 5.1 µm for 100 % carbon source vs 6.2 µm for 10 % carbon source. Corrosion current density (icorr) from potentiodynamic polarization data at the end of the 7 d starvation test for 10 % carbon source was more than 3 times of that for 100 % carbon source, despite a reduced sessile cell count with 10 % carbon source. The polarization resistance (Rp) started to decrease within minutes after 20 ppm (w/w) riboflavin (electron mediator) injection. The carbon starvation data and riboflavin corrosion acceleration data both suggested that D. vulgaris utilized elemental Ti as an electron source to replace carbon source as the electron donor during carbon source starvation.


Asunto(s)
Desulfovibrio vulgaris , Desulfovibrio , Corrosión , Titanio , Carbono , Biopelículas , Riboflavina , Acero
3.
Bioelectrochemistry ; 146: 108143, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35504228

RESUMEN

In this study, the biofilms at different ages formed on galvanized steel coupons in a simulating cooling tower water system were exposed to the Ag-Cu ions over 504 h and the changes in the structure of the biofilms were investigated using electrochemical, microbiological, and surface analyses. The effect of the Ag-Cu ions on the structure of the natural biofilm during the maturation process was evaluated for the first time in this study. Exposure to Ag-Cu ions changed the structure of the biofilm, reducing the concentration of carbohydrates in EPS, causing the shedding from the biofilm by disrupting/making weakening the integrity of the biofilm. After exposure to Ag-Cu ions, the biofilm turned into a heterogeneous, fissured-porous and sandy structure. In addition, in the absence of the ions and after exposure to the ions, the MIC behavior of galvanized steel with natural biofilm at different ages was evaluated using electrochemical and gravimetric tests. It was determined that the galvanized steel suffered to MIC and exposure to Ag-Cu ions increased the corrosion rate of it. Therefore, using of Ag-Cu ions at maximum concentration values (0.1 ppm Ag and 1.3 ppm Cu) suggested by EPA is not recommended to prevent MIC problem in cooling tower systems.


Asunto(s)
Biopelículas , Acero , Corrosión , Iones , Acero/química
4.
Bioprocess Biosyst Eng ; 45(4): 669-678, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34997847

RESUMEN

Microbiologically influenced corrosion (MIC), or microbial biocorrosion, is caused directly by microbial metabolic activities/products or induced by microbial biofilm's damage of a protective film that exposes a solid surface to a pre-existing corrosive environment. MIC causes billions of dollars of losses in various industrial processes, especially in oil and gas and water utilities. The mitigation of problematic industrial microbes typically relies on biocides whose discharges can cause environmental problems. Thus, more effective biocide applications are desired to minimize environmental impact. D-Limonene, a citrus peel oil, generally regarded as safe (GRAS), was used to enhance the popular biodegradable tetrakis hydroxymethyl phosphonium sulfate (THPS) biocide. An oilfield mixed-culture biofilm was grown anaerobically in enriched artificial seawater containing C1018 carbon steel coupons for 7 days at 37 °C. One hundred ppm (w/w) D-limonene reduced general heterotrophic bacteria (GHB) and acid-producing bacteria (APB) effectively, leading to 5.4-log and 6.0-log reductions in sessile GHB and APB cell counts, respectively, compared to no treatment control. The combination of 100 ppm D-limonene + 100 ppm THPS achieved extra 1.0-log SRB, 0.6-log GHB and 0.5-log APB reductions in sessile cell counts, which led to extra 58% reduction in microbial corrosion mass loss (1.2 vs. 0.5 mg/cm2) and extra 30% reductions in maximum pit depth (11.5 vs. 8.1 µm), compared to 100 ppm THPS-only treatment. Linear polarization resistance and potentiodynamic polarization (PDP) corrosion data supported mass loss and pitting data. Mixed-culture biofilms on carbon steel coupons after 7 day incubation at 37 °C showing enhanced biocide treatment outcome using D-limonene + THPS: A no treatment, B 100 ppm D-limonene, C 100 ppm THPS, D 100 ppm D-limonene + 100 ppm THPS.


Asunto(s)
Desinfectantes , Acero , Biopelículas , Carbono/farmacología , Desinfectantes/farmacología , Limoneno/farmacología , Acero/farmacología
5.
Bioresour Bioprocess ; 9(1): 67, 2022 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38647577

RESUMEN

Biocorrosion, also called microbiologically influenced corrosion (MIC), is a common operational threat to many industrial processes. It threatens carbon steel, stainless steel and many other metals. In the bioprocessing industry, reactor vessels in biomass processing and bioleaching are prone to MIC. MIC is caused by biofilms. The formation and morphology of biofilms can be impacted by fluid flow. Fluid velocity affects biocide distribution and MIC. Thus, assessing the efficacy of a biocide for the mitigation of MIC under flow condition is desired before a field trial. In this work, a benchtop closed flow loop bioreactor design was used to investigate the biocide mitigation of MIC of C1018 carbon steel at 25 °C for 7 days using enriched artificial seawater. An oilfield biofilm consortium was analyzed using metagenomics. The biofilm consortium was grown anaerobically in the flow loop which had a holding vessel for the culture medium and a chamber to hold C1018 carbon steel coupons. Peptide A (codename) was a chemically synthesized cyclic 14-mer (cys-ser-val-pro-tyr-asp-tyr-asn-trp-tyr-ser-asn-trp-cys) with its core 12-mer sequence originated from a biofilm dispersing protein secreted by a sea anemone which possesses a biofilm-free exterior. It was used as a biocide enhancer. The combination of 50 ppm (w/w) THPS (tetrakis hydroxymethyl phosphonium sulfate) biocide + 100 nM (180 ppb by mass) Peptide A resulted in extra 1-log reduction in the sulfate reducing bacteria (SRB) sessile cell count and the acid producing bacteria (APB) sessile cell count compared to 50 ppm THPS alone treatment. Furthermore, with the enhancement of 100 nM Peptide A, extra 44% reduction in weight loss and 36% abatement in corrosion pit depth were achieved compared to 50 ppm THPS alone treatment.

6.
World J Microbiol Biotechnol ; 35(2): 22, 2019 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-30656423

RESUMEN

In this study, the effect of biofilm in the maturation process on the corrosion behavior of galvanized steel was investigated in a model of a recirculating water system over 6 months. Electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization methods were used to determine the corrosion behavior of galvanized steel. The biofilm and corrosion products on the galvanized steel surfaces were investigated by using scanning electron microscopy (SEM) and energy dispersive X-ray spectrometry (EDS). EIS results showed that the structure of the biofilm changed during the maturation process over time and the altering structure of the biofilm affects the corrosion behavior of galvanized steel. Also, EIS analyses validated that the biofilm has a dynamic and complex structure. The data obtained from SEM and macroscopic images indicated that EIS is an effective method for monitoring the biofilm-development process.


Asunto(s)
Biopelículas/crecimiento & desarrollo , Acero/química , Corrosión , Espectroscopía Dieléctrica , Microscopía Electrónica de Rastreo , Espectrometría por Rayos X , Propiedades de Superficie , Microbiología del Agua
7.
Bioelectrochemistry ; 110: 91-9, 2016 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-27105168

RESUMEN

The utilization of Ag and Cu ions to prevent both microbial corrosion and biofilm formation has recently increased. The emphasis of this study lies on the effects of Ag and Cu ions on the microbial corrosion of 316L stainless steel (SS) induced by Desulfovibrio sp. Electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization were used to analyze the corrosion behavior. The biofilm formation, corrosion products and Ag and Cu ions on the surfaces were investigated using scanning electron microscopy (SEM), energy dispersive X-ray spectrometry (EDS) and elemental mapping. Through circuit modeling, EIS results were used to interpret the physicoelectric interactions between the electrode, biofilm and culture interfaces. EIS results indicated that the metabolic activity of Desulfovibrio sp. accelerated the corrosion rate of SS in both conditions with and without ions. However, due to the retardation in the growth of Desulfovibrio sp. in the presence of Ag and Cu ions, significant decrease in corrosion rate was observed in the culture with the ions. In addition, SEM and EIS analyses revealed that the presence of the ions leads to the formation on the SS of a biofilm with different structure and morphology. Elemental analysis with EDS detected mainly sulfide- and phosphorous-based corrosion products on the surfaces.


Asunto(s)
Cobre/farmacología , Desulfovibrio/química , Desulfovibrio/efectos de los fármacos , Plata/farmacología , Acero Inoxidable/química , Corrosión , Electroquímica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...