Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
J Immunother Cancer ; 11(7)2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37487664

RESUMEN

BACKGROUND: Cancer immunotherapies are generally effective in patients whose tumors contain a priori primed T-cells reactive to tumor antigens (TA). One approach to prime TA-reactive T-cells is to administer immunostimulatory molecules, cells, or pathogens directly to the tumor site, that is, in situ vaccination (ISV). We recently described an ISV using Flt3L to expand and recruit dendritic cells (DC), radiotherapy to load DC with TA, and pattern recognition receptor agonists (PRRa) to activate TA-loaded DC. While ISV trials using synthetic PRRa have yielded systemic tumor regressions, the optimal method to activate DCs is unknown. METHODS: To discover optimal DC activators and increase access to clinical grade reagents, we assessed whether viral or bacterial components found in common pathogen vaccines are an effective source of natural PRRa (naPRRa). Using deep profiling (155-metric) of naPRRa immunomodulatory effects and gene editing of specific PRR, we defined specific signatures and molecular mechanisms by which naPRRa potentiate T-cell priming. RESULTS: We observed that vaccine naPRRa can be even more potent in activating Flt3L-expanded murine and human DCs than synthetic PRRa, promoting cross-priming of TA-reactive T-cells. We developed a mechanistically diverse naPRRa combination (BCG, PedvaxHIB, Rabies) and noted more potent T-cell cross-priming than with any single naPRRa. The naPRRa triplet-as part of Flt3L-primed ISV-induced greater intratumoral CD8 T-cell infiltration, T-cells reactive to a newly defined tumorous neoantigen, durable tumor regressions. CONCLUSIONS: This work provides rationale for the translation of pathogen vaccines as FDA-approved clinical-grade DC activators which could be exploited as immune-stimulants for early phase trials.


Asunto(s)
Linfocitos T CD8-positivos , Reactividad Cruzada , Humanos , Animales , Ratones , Vacunación , Edición Génica , Inmunización
2.
Semin Oncol ; 50(1-2): 40-48, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37005144

RESUMEN

Panobinostat is an oral pan histone-deacetylase inhibitor used in the treatment of relapsed and refractory multiple myeloma. Previously published studies of panobinostat demonstrated synergy with bortezomib but included few patients exposed to newer agent combinations (ie, panobinostat plus daratumumab or carfilzomib). Here, we report outcomes of panobinostat-based combinations at an academic medical center among patients whose disease had been heavily pretreated with modern agents. We retrospectively analyzed 105 patients with myeloma treated with panobinostat at The Mount Sinai Hospital in New York City between October 2012 and October 2021. These patients had a median age of 65 (range 37-87) and had received a median of 6 prior lines of therapy while in 53% the disease was classified as triple class refractory and in 54% the disease had high-risk cytogenetics. Panobinostat was most commonly utilized at 20 mg (64.8%) as part of a triplet (61.0%) or quadruplet (30.5%). Aside from steroids, panobinostat was most commonly administered in combination with lenalidomide, pomalidomide, carfilzomib, and daratumumab in descending order of frequency. Among the 101 response-evaluable patients, the overall response rate was 24.8%, clinical benefit rate (≥minimal response) was 36.6%, and median progression-free survival was 3.4 months. Median overall survival was 19.1 months. The most common toxicities ≥grade 3 were hematologic, primarily neutropenia (34.3%), thrombocytopenia (27.6%), and anemia (19.1%). Panobinostat-based combinations produced modest response rates in patients with heavily pretreated multiple myeloma, over half of whom had triple-class refractory disease. Panobinostat warrants continued investigation as a tolerable oral option for recapturing responses in patients whose disease has progressed after receipt of standard-of-care therapies.


Asunto(s)
Mieloma Múltiple , Humanos , Panobinostat/uso terapéutico , Mieloma Múltiple/tratamiento farmacológico , Estudios Retrospectivos , Indoles/efectos adversos , Ácidos Hidroxámicos/efectos adversos , Protocolos de Quimioterapia Combinada Antineoplásica/efectos adversos , Dexametasona
3.
Nat Commun ; 13(1): 7149, 2022 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-36418317

RESUMEN

Immunotherapies directly enhancing anti-tumor CD8+ T cell responses have yielded measurable but limited success, highlighting the need for alternatives. Anti-tumor T cell responses critically depend on antigen presenting dendritic cells (DC), and enhancing mobilization, antigen loading and activation of these cells represent an attractive possibility to potentiate T cell based therapies. Here we show that expansion of DCs by Flt3L administration impacts in situ vaccination with oncolytic Newcastle Disease Virus (NDV). Mechanistically, NDV activates DCs and sensitizes them to dying tumor cells through upregulation of dead-cell receptors and synergizes with Flt3L to promote anti-tumor CD8+ T cell cross-priming. In vivo, Flt3L-NDV in situ vaccination induces parallel amplification of virus- and tumor-specific T cells, including CD8+ T cells reactive to newly-described neoepitopes, promoting long-term tumor control. Cross-presenting conventional Type 1 DCs are indispensable for the anti-tumor, but not anti-viral, T cell response, and type I IFN-dependent CD4+ Th1 effector cells contribute to optimal anti-tumor immunity. These data demonstrate that mobilizing DCs to increase tumor antigen cross-presentation improves oncolytic virotherapy and that neoepitope-specific T cells can be induced without individualized, ex vivo manufactured vaccines.


Asunto(s)
Neoplasias , Viroterapia Oncolítica , Vacunas , Animales , Linfocitos T CD8-positivos , Células Dendríticas , Reactividad Cruzada , Antígenos de Neoplasias , Neoplasias/metabolismo , Vacunas/metabolismo
4.
Cancer Discov ; 11(3): 599-613, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33334730

RESUMEN

T cell-based therapies have induced cancer remissions, though most tumors ultimately progress, reflecting inherent or acquired resistance including antigen escape. Better understanding of how T cells eliminate tumors will help decipher resistance mechanisms. We used a CRISPR/Cas9 screen and identified a necessary role for Fas-FasL in antigen-specific T-cell killing. We also found that Fas-FasL mediated off-target "bystander" killing of antigen-negative tumor cells. This localized bystander cytotoxicity enhanced clearance of antigen-heterogeneous tumors in vivo, a finding that has not been shown previously. Fas-mediated on-target and bystander killing was reproduced in chimeric antigen receptor (CAR-T) and bispecific antibody T-cell models and was augmented by inhibiting regulators of Fas signaling. Tumoral FAS expression alone predicted survival of CAR-T-treated patients in a large clinical trial (NCT02348216). These data suggest strategies to prevent immune escape by targeting both the antigen expression of most tumor cells and the geography of antigen-loss variants. SIGNIFICANCE: This study demonstrates the first report of in vivo Fas-dependent bystander killing of antigen-negative tumors by T cells, a phenomenon that may be contributing to the high response rates of antigen-directed immunotherapies despite tumoral heterogeneity. Small molecules that target the Fas pathway may potentiate this mechanism to prevent cancer relapse.This article is highlighted in the In This Issue feature, p. 521.


Asunto(s)
Citotoxicidad Inmunológica , Inmunoterapia , Linfocitos T/inmunología , Linfocitos T/metabolismo , Receptor fas/metabolismo , Animales , Antígenos de Neoplasias/inmunología , Efecto Espectador/inmunología , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/metabolismo , Sistemas CRISPR-Cas , Modelos Animales de Enfermedad , Edición Génica , Ingeniería Genética , Humanos , Inmunoterapia/efectos adversos , Inmunoterapia/métodos , Inmunoterapia Adoptiva/efectos adversos , Inmunoterapia Adoptiva/métodos , Ratones , Ratones Noqueados , Neoplasias/etiología , Neoplasias/terapia , Receptores Quiméricos de Antígenos , Especificidad del Receptor de Antígeno de Linfocitos T , Resultado del Tratamiento , Ensayos Antitumor por Modelo de Xenoinjerto
5.
Cancer Discov ; 9(11): 1520-1537, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31375522

RESUMEN

T-cell transfer into lymphodepleted recipients induces homeostatic activation and potentiates antitumor efficacy. In contrast to canonical T-cell receptor-induced activation, homeostatic activation yields a distinct phenotype and memory state whose regulatory mechanisms are poorly understood. Here, we show in patients and murine models that, following transfer into lymphodepleted bone marrow transplant (BMT) recipients, CD8+ T cells undergo activation but also simultaneous homeostatic inhibition manifested by upregulation of immune-checkpoint molecules and functional suppression. T cells transferred into BMT recipients were protected from homeostatic inhibition by PD-1/CTLA4 dual checkpoint blockade (dCB). This combination of dCB and BMT-"immunotransplant"-increased T-cell homeostatic activation and antitumor T-cell responses by an order of magnitude. Like homeostatic activation, homeostatic inhibition is IL7/IL15-dependent, revealing mechanistic coupling of these two processes. Marked similarity in ex vivo modulation of post-BMT T cells in mice and patients is promising for the clinical translation of immunotransplant (NCT03305445) and for addressing homeostatic inhibition in T-cell therapies. SIGNIFICANCE: For optimal anticancer effect, T-cell therapies including chimeric antigen receptor T-cell, tumor-infiltrating lymphocyte, and transgenic T-cell therapies require transfer into lymphodepleted recipients and homeostatic activation; however, concomitant homeostatic inhibition mitigates T-cell therapies' efficacy. Checkpoint blockade uncouples homeostatic inhibition from activation, amplifying T-cell responses. Conversely, tumors nonresponsive to checkpoint blockade or BMT are treatable with immunotransplant.See related commentary by Ansell, p. 1487.This article is highlighted in the In This Issue feature, p. 1469.


Asunto(s)
Antígeno B7-H1/antagonistas & inhibidores , Trasplante de Médula Ósea/métodos , Antígeno CTLA-4/antagonistas & inhibidores , Neoplasias/terapia , Linfocitos T/metabolismo , Animales , Línea Celular Tumoral , Terapia Combinada , Femenino , Homeostasis , Humanos , Huésped Inmunocomprometido/efectos de los fármacos , Inmunoterapia , Masculino , Ratones , Neoplasias/inmunología , Resultado del Tratamiento , Ensayos Antitumor por Modelo de Xenoinjerto
6.
Nat Med ; 25(5): 814-824, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30962585

RESUMEN

Indolent non-Hodgkin's lymphomas (iNHLs) are incurable with standard therapy and are poorly responsive to checkpoint blockade. Although lymphoma cells are efficiently killed by primed T cells, in vivo priming of anti-lymphoma T cells has been elusive. Here, we demonstrate that lymphoma cells can directly prime T cells, but in vivo immunity still requires cross-presentation. To address this, we developed an in situ vaccine (ISV), combining Flt3L, radiotherapy, and a TLR3 agonist, which recruited, antigen-loaded and activated intratumoral, cross-presenting dendritic cells (DCs). ISV induced anti-tumor CD8+ T cell responses and systemic (abscopal) cancer remission in patients with advanced stage iNHL in an ongoing trial ( NCT01976585 ). Non-responding patients developed a population of PD1+CD8+ T cells after ISV, and murine tumors became newly responsive to PD1 blockade, prompting a follow-up trial of the combined therapy. Our data substantiate that recruiting and activating intratumoral, cross-priming DCs is achievable and critical to anti-tumor T cell responses and PD1-blockade efficacy.


Asunto(s)
Vacunas contra el Cáncer , Linfoma de Células B/terapia , Adulto , Anciano , Animales , Presentación de Antígeno , Linfocitos T CD8-positivos/inmunología , Carboximetilcelulosa de Sodio/análogos & derivados , Carboximetilcelulosa de Sodio/uso terapéutico , Línea Celular Tumoral , Terapia Combinada , Células Dendríticas/inmunología , Femenino , Humanos , Inmunoterapia Adoptiva , Linfoma de Células B/inmunología , Linfoma de Células B/patología , Masculino , Proteínas de la Membrana/inmunología , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Noqueados , Persona de Mediana Edad , Poli I-C/uso terapéutico , Polilisina/análogos & derivados , Polilisina/uso terapéutico , Receptor de Muerte Celular Programada 1/antagonistas & inhibidores , Receptor de Muerte Celular Programada 1/inmunología , Receptor Toll-Like 3/agonistas , Vacunación
7.
Cancers (Basel) ; 7(2): 736-62, 2015 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-25941795

RESUMEN

While the cellular origin of lymphoma is often characterized by chromosomal translocations and other genetic aberrations, its growth and development into a malignant neoplasm is highly dependent upon its ability to escape natural host defenses. Neoplastic cells interact with a variety of non-malignant cells in the tumor milieu to create an immunosuppressive microenvironment. The resulting functional impairment and dysregulation of tumor-associated immune cells not only allows for passive growth of the malignancy but may even provide active growth signals upon which the tumor subsequently becomes dependent. In the past decade, the success of immune checkpoint blockade and adoptive cell transfer for relapsed or refractory lymphomas has validated immunotherapy as a possible treatment cornerstone. Here, we review the mechanisms by which lymphomas have been found to evade and even reprogram the immune system, including alterations in surface molecules, recruitment of immunosuppressive subpopulations, and secretion of anti-inflammatory factors. A fundamental understanding of the immune evasion strategies utilized by lymphomas may lead to better prognostic markers and guide the development of targeted interventions that are both safer and more effective than current standards of care.

8.
Proc Natl Acad Sci U S A ; 108(12): 5133-8, 2011 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-21383144

RESUMEN

Although individual cells vary in behavior during the formation of tissues, the nature of such variations are largely uncharacterized. Here, we tracked the morphologies and motilities of ~300 human endothelial cells from an initial dispersed state to the formation of capillary-like structures, distilling the dynamics of tissue morphogenesis into an array of ~36,000 numerical phenotypes. Quantitative analysis of population averages revealed two previously unidentified phases in which the cells spread before forming connections with neighboring cells and where the microvascular plexus stabilized before spatially reorganizing. Analysis at the single-cell level showed that in contrast to the population-averaged behavior, most cells followed distinct temporal patterns that were not reflected in the bulk average. Interestingly, some of these behavioral patterns correlated to the cells' final structural role within the plexus. Knowledge of how individual cells or groups of cells behave enhances our understanding of how native tissues self-organize and could ultimately enable more precise approaches for engineering tissues and synthesizing multicellular communities.


Asunto(s)
Capilares/citología , Capilares/fisiología , Células Endoteliales/citología , Células Endoteliales/fisiología , Células Cultivadas , Humanos , Ingeniería de Tejidos/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA