Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Biomolecules ; 14(3)2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38540704

RESUMEN

Bis-indole derived compounds such as 1,1-bis(3'-indolyl)-1-(3,5-disubstitutedphenyl) methane (DIM-3,5) and the corresponding 4-hydroxyl analogs (DIM8-3,5) are NR4A1 ligands that act as inverse NR4A1 agonists and are potent inhibitors of tumor growth. The high potency of several DIM-3,5 analogs (IC50 < 1 mg/kg/day), coupled with the >60% similarity of the ligand-binding domains (LBDs) of NR4A1 and NR4A2 and the pro-oncogenic activities of both receptors lead us to hypothesize that these compounds may act as dual NR4A1 and NR4A2 ligands. Using a fluorescence binding assay, it was shown that 22 synthetic DIM8-3,5 and DIM-3,5 analogs bound the LBD of NR4A1 and NR4A2 with most KD values in the low µM range. Moreover, the DIM-3,5 and DIM8-3,5 analogs also decreased NR4A1- and NR4A2-dependent transactivation in U87G glioblastoma cells transfected with GAL4-NR4A1 or GAL4-NR4A2 chimeras and a UAS-luciferase reporter gene construct. The DIM-3,5 and DIM8-3,5 analogs were cytotoxic to U87 glioblastoma and RKO colon cancer cells and the DIM-3,5 compounds were more cytotoxic than the DIM8-3,5 compounds. These studies show that both DIM-3,5 and DIM8-3,5 compounds previously identified as NR4A1 ligands bind both NR4A1 and NR4A2 and are dual NR4A1/2 ligands.


Asunto(s)
Glioblastoma , Humanos , Ligandos , Miembro 1 del Grupo A de la Subfamilia 4 de Receptores Nucleares/genética , Miembro 1 del Grupo A de la Subfamilia 4 de Receptores Nucleares/metabolismo , Línea Celular Tumoral , Indoles/farmacología , Indoles/química , Miembro 2 del Grupo A de la Subfamilia 4 de Receptores Nucleares/metabolismo
2.
bioRxiv ; 2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38464253

RESUMEN

A mechanistic role for nuclear function of testis-specific actin related proteins (ARPs) is proposed here through contributions of ARP subunit swapping in canonical chromatin regulatory complexes. This is significant to our understanding of both mechanisms controlling regulation of spermiogenesis, and the expanding functional roles of the ARPs in cell biology. Among these roles, actins and ARPs are pivotal not only in cytoskeletal regulation, but also in intranuclear chromatin organization, influencing gene regulation and nucleosome remodeling. This study focuses on two testis-specific ARPs, ACTL7A and ACTL7B, exploring their intranuclear activities and broader implications utilizing combined in vivo, in vitro, and in silico approaches. ACTL7A and ACTL7B, previously associated with structural roles, are hypothesized here to serve in chromatin regulation during germline development. This study confirms the intranuclear presence of ACTL7B in spermatocytes and round spermatids, revealing a potential role in intranuclear processes, and identifies a putative nuclear localization sequence conserved across mammalian ACTL7B, indicating a potentially unique mode of nuclear transport which differs from conventional actin. Ablation of ACTL7B leads to varied transcriptional changes reported here. Additionally, in the absence of ACTL7A or ACTL7B there is a loss of intranuclear localization of HDAC1 and HDAC3, which are known regulators of epigenetic associated acetylation changes that in turn regulate gene expression. Thus, these HDACs are implicated as contributors to the aberrant gene expression observed in the KO mouse testis transcriptomic analysis. Furthermore, this study employed and confirmed the accuracy of in silico models to predict ARP interactions with Helicase-SANT-associated (HSA) domains, uncovering putative roles for testis-specific ARPs in nucleosome remodeling complexes. In these models, ACTL7A and ACTL7B were found capable of binding to INO80 and SWI/SNF nucleosome remodeler family members in a manner akin to nuclear actin and ACTL6A. These models thus implicate germline-specific ARP subunit swapping within chromatin regulatory complexes as a potential regulatory mechanism for chromatin and associated molecular machinery adaptations in nuclear reorganizations required during spermiogenesis. These results hold implications for male fertility and epigenetic programing in the male-germline that warrant significant future investigation. In summary, this study reveals that ACTL7A and ACTL7B play intranuclear gene regulation roles in male gametogenesis, adding to the multifaceted roles identified also spanning structural, acrosomal, and flagellar stability. ACTL7A and ACTL7B unique nuclear transport, impact on HDAC nuclear associations, impact on transcriptional processes, and proposed mechanism for involvement in nucleosome remodeling complexes supported by AI facilitated in silico modeling contribute to a more comprehensive understanding of the indispensable functions of ARPs broadly in cell biology, and specifically in male fertility.

3.
Int J Mol Sci ; 24(9)2023 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-37175855

RESUMEN

It was recently reported that the hydroxyflavones quercetin and kaempferol bind the orphan nuclear receptor 4A1 (NR4A1, Nur77) and act as antagonists in cancer cells and tumors, and they inhibit pro-oncogenic NR4A1-regulated genes and pathways. In this study, we investigated the interactions of flavone, six hydroxyflavones, seven dihydroxyflavones, three trihydroxyflavones, two tetrahydroxyflavones, and one pentahydroxyflavone with the ligand-binding domain (LBD) of NR4A1 using direct-binding fluorescence and an isothermal titration calorimetry (ITC) assays. Flavone and the hydroxyflavones bound NR4A1, and their KD values ranged from 0.36 µM for 3,5,7-trihydroxyflavone (galangin) to 45.8 µM for 3'-hydroxyflavone. KD values determined using ITC and KD values for most (15/20) of the hydroxyflavones were decreased compared to those obtained using the fluorescence assay. The results of binding, transactivation and receptor-ligand modeling assays showed that KD values, transactivation data and docking scores for these compounds are highly variable with respect to the number and position of the hydroxyl groups on the flavone backbone structure, suggesting that hydroxyflavones are selective NR4A1 modulators. Nevertheless, the data show that hydroxyflavone-based neutraceuticals are NR4A1 ligands and that some of these compounds can now be repurposed and used to target sub-populations of patients that overexpress NR4A1.


Asunto(s)
Flavonas , Receptores Nucleares Huérfanos , Humanos , Flavonas/farmacología , Ligandos , Miembro 1 del Grupo A de la Subfamilia 4 de Receptores Nucleares , Receptores Nucleares Huérfanos/metabolismo , Unión Proteica
4.
Int J Mol Sci ; 24(3)2023 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-36769029

RESUMEN

Coffee is one of the most widely consumed beverages worldwide, and epidemiology studies associate higher coffee consumption with decreased rates of mortality and decreased rates of neurological and metabolic diseases, including Parkinson's disease and type 2 diabetes. In addition, there is also evidence that higher coffee consumption is associated with lower rates of colon and rectal cancer, as well as breast, endometrial, and other cancers, although for some of these cancers, the results are conflicting. These studies reflect the chemopreventive effects of coffee; there is also evidence that coffee consumption may be therapeutic for some forms of breast and colon cancer, and this needs to be further investigated. The mechanisms associated with the chemopreventive or chemotherapeutic effects of over 1000 individual compounds in roasted coffee are complex and may vary with different diseases. Some of these mechanisms may be related to nuclear factor erythroid 2 (Nrf2)-regulated pathways that target oxidative stress or pathways that induce reactive oxygen species to kill diseased cells (primarily therapeutic). There is evidence for the involvement of receptors which include the aryl hydrocarbon receptor (AhR) and orphan nuclear receptor 4A1 (NR4A1), as well as contributions from epigenetic pathways and the gut microbiome. Further elucidation of the mechanisms will facilitate the potential future clinical applications of coffee extracts for treating cancer and other inflammatory diseases.


Asunto(s)
Anticarcinógenos , Diabetes Mellitus Tipo 2 , Neoplasias , Humanos , Diabetes Mellitus Tipo 2/prevención & control , Neoplasias/tratamiento farmacológico , Neoplasias/prevención & control , Estrés Oxidativo , Especies Reactivas de Oxígeno , Café
5.
Biol Reprod ; 108(3): 447-464, 2023 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-36617158

RESUMEN

The formation of fertilisation-competent sperm requires spermatid morphogenesis (spermiogenesis), a poorly understood program that involves complex coordinated restructuring and specialised cytoskeletal structures. A major class of cytoskeletal regulators are the actin-related proteins (ARPs), which include conventional actin variants, and related proteins that play essential roles in complexes regulating actin dynamics, intracellular transport, and chromatin remodeling. Multiple testis-specific ARPs are well conserved among mammals, but their functional roles are unknown. One of these is actin-like 7b (Actl7b) that encodes an orphan ARP highly similar to the ubiquitously expressed beta actin (ACTB). Here we report ACTL7B is expressed in human and mouse spermatids through the elongation phase of spermatid development. In mice, ACTL7B specifically localises to the developing acrosome, within the nucleus of early spermatids, and to the flagellum connecting region. Based on this localisation pattern and high level of sequence conservation in mice, humans, and other mammals, we examined the requirement for ACTL7B in spermiogenesis by generating and characterising the reproductive phenotype of male Actl7b KO mice. KO mice were infertile, with severe and variable oligoteratozoospermia (OAT) and multiple morphological abnormalities of the flagellum (MMAF) and sperm head. These defects phenocopy human OAT and MMAF, which are leading causes of idiopathic male infertility. In conclusion, this work identifies ACTL7B as a key regulator of spermiogenesis that is required for male fertility.


Asunto(s)
Actinas , Infertilidad Masculina , Masculino , Ratones , Humanos , Animales , Actinas/genética , Actinas/metabolismo , Avena , Semillas/metabolismo , Espermátides/metabolismo , Espermatogénesis/genética , Flagelos/metabolismo , Infertilidad Masculina/genética , Infertilidad Masculina/metabolismo , Mamíferos
6.
G3 (Bethesda) ; 12(2)2022 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-34878116

RESUMEN

The high mobility group AT-hook 2 (HMGA2) protein works as an architectural regulator by binding AT-rich DNA sequences to induce conformational changes affecting transcription. Genomic deletions disrupting HMGA2 coding sequences and flanking noncoding sequences cause dwarfism in mice and rabbits. Here, CRISPR/Cas9 was used in mice to generate an Hmga2 null allele that specifically disrupts only the coding sequence. The loss of one or both alleles of Hmga2 resulted in reduced body size of 20% and 60%, respectively, compared to wild-type littermates as well as an allometric reduction in skull length in Hmga2-/- mice. Both male and female Hmga2-/- mice are infertile, whereas Hmga2+/- mice are fertile. Examination of reproductive tissues of Hmga2-/- males revealed a significantly reduced size of testis, epididymis, and seminal vesicle compared to controls, and 70% of knock-out males showed externalized penis, but no cryptorchidism was observed. Sperm analyses revealed severe oligospermia in mutant males and slightly decreased sperm viability, increased DNA damage but normal sperm chromatin compaction. Testis histology surprisingly revealed a normal seminiferous epithelium, despite the significant reduction in testis size. In addition, Hmga2-/- mice showed a significantly reduced exploratory behavior. In summary, the phenotypic effects in mouse using targeted mutagenesis confirmed that Hmga2 is affecting prenatal and postnatal growth regulation, male reproductive tissue development, and presents the first indication that Hmga2 function is required for normal mouse behavior. No specific effect, despite an allometric reduction, on craniofacial development was noted in contrast to previous reports of an altered craniofacial development in mice and rabbits carrying deletions of both coding and noncoding sequences at the 5' part of Hmga2.


Asunto(s)
Epidídimo , Proteína HMGA2/metabolismo , Infertilidad , Animales , Epidídimo/metabolismo , Epidídimo/patología , Femenino , Trastornos del Crecimiento/metabolismo , Trastornos del Crecimiento/patología , Proteína HMGA2/genética , Infertilidad/metabolismo , Infertilidad/patología , Masculino , Ratones , Embarazo , Conejos , Reproducción/genética , Testículo/metabolismo
7.
Curr Biol ; 30(8): 1387-1396.e5, 2020 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-32109388

RESUMEN

Cryptococcus neoformans is a global human fungal pathogen that causes fatal meningoencephalitis in mostly immunocompromised individuals. During pulmonary infection, cryptococcal cells form large polyploid cells that exhibit increased resistance to host immune attack and are proposed to contribute to the latency of cryptococcal infection. These polyploid titan cells can generate haploid and aneuploid progeny that may result in systemic infection. What triggers cryptococcal polyploidization and how ploidy reduction is achieved remain open questions. Here, we discovered that Cryptococcus cells polyploidize in response to genotoxic stresses that cause DNA double-strand breaks. Intriguingly, meiosis-specific genes are activated in C. neoformans and contribute to ploidy reduction, both in vitro and during infection in mice. Cryptococcal cells that activated their meiotic genes in mice were resistant to specific genotoxic stress compared to sister cells recovered from the same host tissue but without activation of meiotic genes. Our findings support the idea that meiotic genes, in addition to their conventional roles in classic sexual reproduction, contribute to adaptation of eukaryotic cells that undergo dramatic genome changes in response to genotoxic stress. The discovery has additional implications for evolution of sexual reproduction and the paradox of the presence of meiotic machinery in asexual species. Finally, our findings in this eukaryotic microbe mirror the revolutionary discoveries of the polyploidization and meiosis-like ploidy reduction process in cancer cells, suggesting that the reversible ploidy change itself could provide a general mechanism for rejuvenation to promote individual survival in response to stress.


Asunto(s)
Criptococosis/microbiología , Cryptococcus neoformans/genética , Meiosis/genética , Poliploidía , Animales , Femenino , Ratones , Estrés Fisiológico
8.
mBio ; 9(6)2018 11 13.
Artículo en Inglés | MEDLINE | ID: mdl-30425151

RESUMEN

Switching between different morphotypes is an adaptive cellular response in many microbes. In Cryptococcus neoformans, the yeast-to-hypha transition confers resistance to microbial predation in the soil and is an integral part of its life cycle. Morphogenesis is also known to be associated with virulence, with the filamentous form being immune-stimulatory and protective in mammalian models of cryptococcosis. Previous studies identified the transcription factor Znf2 as a master regulator of cryptococcal filamentation. However, the upstream regulators of Znf2 remain largely unknown. PAS domain proteins have long been recognized as transducers of diverse environmental signals. Here, we identified a PAS domain protein Pas3 as an upstream regulator of Znf2. Surprisingly, this small Pas3 protein lacks a nuclear localization signal but is enriched in the nucleus where it regulates the transcript level of ZNF2 and its prominent downstream targets. We discovered that the PAS domain is essential for Pas3's nuclear enrichment and function. Intriguingly, Pas3 interacts with Bre1, which is required for Cryptococcus histone H2B monoubiquitination (H2Bub1) and H3 lysine 4 dimethylation (H3K4me2), two histone modifications known to be associated with active gene transcription. Indeed, Bre1 functions together with Pas3 in regulating cryptococcal filamentation based on loss-of-function, epistasis, and transcriptome analysis. These findings provide the first evidence of a signaling regulator acting with a chromatin modifier to control cryptococcal filamentation.IMPORTANCE For the ubiquitous environmental pathogen Cryptococcus neoformans, the morphological transition from yeast to filament confers resistance to natural predators like soil amoeba and is an integral differentiation event to produce infectious spores. Interestingly, filamentation is immuno-stimulatory and attenuates cryptococcal virulence in a mammalian host. Consistently, the morphogenesis transcription factor Znf2 profoundly shapes cryptococcal interaction with various hosts. Identifying the signaling pathways activating filamentation is thus, conductive to a better understanding of cryptococcal biology. In this study, we identified a PAS domain protein Pas3 that functions upstream of Znf2 in regulating cryptococcal filamentation. Interestingly, Pas3 interacts with the chromatin modifier Bre1 in the nucleus to regulate the transcript level of Znf2 and its prominent downstream targets. This is the first example of a PAS domain signaling regulator interacting with a chromatin modifier to control filamentation through their impact on cryptococcal transcriptome.


Asunto(s)
Cryptococcus neoformans/fisiología , Proteínas Fúngicas/metabolismo , Regulación Fúngica de la Expresión Génica , Proteínas de la Membrana/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Cryptococcus neoformans/genética , Proteínas Fúngicas/genética , Hifa/fisiología , Proteínas de la Membrana/genética , Dominios Proteicos , Proteínas Serina-Treonina Quinasas/genética , Transducción de Señal , Virulencia
9.
PLoS Genet ; 13(5): e1006772, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28467481

RESUMEN

The fungus Cryptococcus neoformans can undergo a-α bisexual and unisexual reproduction. Completion of both sexual reproduction modes requires similar cellular differentiation processes and meiosis. Although bisexual reproduction generates equal number of a and α progeny and is far more efficient than unisexual reproduction under mating-inducing laboratory conditions, the α mating type dominates in nature. Population genetic studies suggest that unisexual reproduction by α isolates might have contributed to this sharply skewed distribution of the mating types. However, the predominance of the α mating type and the seemingly inefficient unisexual reproduction observed under laboratory conditions present a conundrum. Here, we discovered a previously unrecognized condition that promotes unisexual reproduction while suppressing bisexual reproduction. Pheromone is the principal stimulus for bisexual development in Cryptococcus. Interestingly, pheromone and other components of the pheromone pathway, including the key transcription factor Mat2, are not necessary but rather inhibitory for Cryptococcus to complete its unisexual cycle under this condition. The inactivation of the pheromone pathway promotes unisexual reproduction despite the essential role of this pathway in non-self-recognition during bisexual reproduction. Nonetheless, the requirement for the known filamentation regulator Znf2 and the expression of hyphal or basidium specific proteins remain the same for pheromone-dependent or independent sexual reproduction. Transcriptome analyses and an insertional mutagenesis screen in mat2Δ identified calcineurin being essential for this process. We further found that Znf2 and calcineurin work cooperatively in controlling unisexual development in this fungus. These findings indicate that Mat2 acts as a repressor of pheromone-independent unisexual development while serving as an activator for a-α bisexual development. The bi-functionality of Mat2 might have allowed it to act as a toggle switch for the mode of sexual development in this ubiquitous eukaryotic microbe.


Asunto(s)
Cryptococcus neoformans/crecimiento & desarrollo , Genes del Tipo Sexual de los Hongos , Factor de Apareamiento/metabolismo , Calcineurina/genética , Calcineurina/metabolismo , Cryptococcus neoformans/genética , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Factor de Apareamiento/genética , Reproducción Asexuada , Esporas Fúngicas/genética , Esporas Fúngicas/crecimiento & desarrollo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
10.
Appl Environ Microbiol ; 83(5)2017 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-28039134

RESUMEN

Cryptococcus neoformans, an opportunistic human fungal pathogen, can undergo a yeast-to-hypha transition in response to environmental cues. This morphological transition is associated with changes in the expression of cell surface proteins. The Cryptococcus cell surface and secreted protein Cfl1 was the first identified adhesin in the Basidiomycota. Cfl1 has been shown to regulate morphology, biofilm formation, and intercellular communication. Four additional homologs of CFL1 are harbored by the Cryptococcus genome: DHA1, DHA2, CPL1, and CFL105 The common features of this gene family are the conserved C-terminal SIGC domain and the presence of an N-terminal signal peptide. We found that all these Cfl1 homolog proteins are indeed secreted extracellularly. Interestingly, some of these secretory proteins display cell type-specific expression patterns: Cfl1 is hypha specific, Dha2 is yeast specific, and Dha1 (delayed hypersensitivity antigen 1) is expressed in all cell types but is particularly enriched at basidia. Interestingly, Dha1 is induced by copper limitation and suppressed by excessive copper in the medium. This study further attests to the physiological heterogeneity of the Cryptococcus mating colony, which is composed of cells with heterogeneous morphotypes. The differential expression of these secretory proteins contributes to heterogeneity, which is beneficial for the fungus to adapt to changing environments.IMPORTANCE Heterogeneity in physiology and morphology is an important bet-hedging strategy for nonmobile microbes such as fungi to adapt to unpredictable environmental changes. Cryptococcus neoformans, a ubiquitous basidiomycetous fungus, is known to switch from the yeast form to the hypha form during sexual development. However, in a mating colony, only a subset of yeast cells switch to hyphae, and only a fraction of the hyphal subpopulation will develop into fruiting bodies, where meiosis and sporulation occur. Here, we investigated a basidiomycete-specific secretory protein family. We found that some of these proteins are cell type specific, thus contributing to the heterogeneity of a mating colony. Our study also demonstrates the importance of examining the protein expression pattern at the individual-cell level in addition to population gene expression profiling for the investigation of a heterogeneous community.


Asunto(s)
Cryptococcus neoformans/citología , Cryptococcus neoformans/metabolismo , Cryptococcus neoformans/fisiología , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Adaptación Biológica , Biopelículas/crecimiento & desarrollo , Cofilina 1/genética , Cofilina 1/metabolismo , Cryptococcus neoformans/genética , Proteínas Fúngicas/fisiología , Eliminación de Gen , Perfilación de la Expresión Génica , Genes del Tipo Sexual de los Hongos , Hifa/citología , Hifa/crecimiento & desarrollo , Hifa/fisiología , Meiosis , Morfogénesis , Fenotipo , Reproducción , Especificidad de la Especie , Termotolerancia , Virulencia
11.
mBio ; 7(6)2016 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-27879337

RESUMEN

Melanins are biopolymers that confer coloration and protection to the host organism against biotic or abiotic insults. The level of protection offered by melanin depends on its biosynthesis and its subcellular localization. Previously, we discovered that Aspergillus fumigatus compartmentalizes melanization in endosomes by recruiting all melanin enzymes to the secretory pathway. Surprisingly, although two laccases involved in the late steps of melanization are conventional secretory proteins, the four enzymes involved in the early steps of melanization lack a signal peptide or a transmembrane domain and are thus considered "atypical" secretory proteins. In this work, we found interactions among melanin enzymes and all melanin enzymes formed protein complexes. Surprisingly, the formation of protein complexes by melanin enzymes was not critical for their trafficking to the endosomal system. By palmitoylation profiling and biochemical analyses, we discovered that all four early melanin enzymes were strongly palmitoylated during conidiation. However, only the polyketide synthase (PKS) Alb1 was strongly palmitoylated during both vegetative hyphal growth and conidiation when constitutively expressed alone. This posttranslational lipid modification correlates the endosomal localization of all early melanin enzymes. Intriguingly, bioinformatic analyses predict that palmitoylation is a common mechanism for potential membrane association of polyketide synthases (PKSs) and nonribosomal peptide synthetases (NRPSs) in A. fumigatus Our findings indicate that protein-protein interactions facilitate melanization by metabolic channeling, while posttranslational lipid modifications help recruit the atypical enzymes to the secretory pathway, which is critical for compartmentalization of secondary metabolism. IMPORTANCE: Subcellular compartmentalization is increasingly recognized as an important aspect of fungal secondary metabolism. It facilitates sequential enzymatic reactions, provides mobility for enzymes and metabolites, and offers protection against self-toxification. However, how compartmentalization is achieved remains unclear given that the majority of enzymes encoded by secondary metabolism gene clusters are predicted to be cytosolic proteins. Through studying melanization in Aspergillus, we previously found that all enzymes involved in the early steps of melanization are atypical secretory proteins. Here, we discovered physical interactions among melanin enzymes. However, it was the posttranslational palmitoylation rather than the physical interaction that was responsible for their recruitment to the secretory pathway. Intriguingly, palmitoylation is likely a common mechanism for potential membrane association of polyketide synthases (PKSs) and nonribosomal peptide synthetases (NRPSs) in A. fumigatus Collectively, our findings suggest that posttranslational lipid modification helps direct secondary metabolism to defined organelles for biosynthesis and trafficking.


Asunto(s)
Aspergillus fumigatus/enzimología , Aspergillus fumigatus/metabolismo , Melaninas/metabolismo , Sintasas Poliquetidas/metabolismo , Procesamiento Proteico-Postraduccional , Vías Secretoras , Lipoilación , Transporte de Proteínas
12.
Cell Rep ; 14(11): 2511-8, 2016 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-26972005

RESUMEN

Protection by melanin depends on its subcellular location. Although most filamentous fungi synthesize melanin via a polyketide synthase pathway, where and how melanin biosynthesis occurs and how it is deposited as extracellular granules remain elusive. Using a forward genetic screen in the pathogen Aspergillus fumigatus, we find that mutations in an endosomal sorting nexin abolish melanin cell-wall deposition. We find that all enzymes involved in the early steps of melanin biosynthesis are recruited to endosomes through a non-conventional secretory pathway. In contrast, late melanin enzymes accumulate in the cell wall. Such subcellular compartmentalization of the melanin biosynthetic machinery occurs in both A. fumigatus and A. nidulans. Thus, fungal melanin biosynthesis appears to be initiated in endosomes with exocytosis leading to melanin extracellular deposition, much like the synthesis and trafficking of mammalian melanin in endosomally derived melanosomes.


Asunto(s)
Aspergillus fumigatus/metabolismo , Proteínas Fúngicas/biosíntesis , Melaninas/biosíntesis , Proteínas 14-3-3/metabolismo , Aspergillus nidulans/metabolismo , Pared Celular/metabolismo , Endosomas/metabolismo , Exocitosis , Microscopía Electrónica de Rastreo , Microscopía Electrónica de Transmisión , Mutagénesis , Sintasas Poliquetidas/metabolismo , Isoformas de Proteínas/metabolismo , Transporte de Proteínas , Nexinas de Clasificación/genética , Nexinas de Clasificación/metabolismo , Proteínas de Unión al GTP rab/metabolismo , Proteínas de Unión al GTP rab5/metabolismo , Proteínas de Unión a GTP rab7
13.
mBio ; 6(5): e01433-15, 2015 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-26443458

RESUMEN

UNLABELLED: Morphological switch is tightly coupled with the pathogenesis of many dimorphic fungal pathogens. Cryptococcus neoformans, the major causative agent of cryptococcal meningitis, mostly presents as the yeast form but is capable of switching to the hyphal form. The filamentous form has long been associated with attenuated virulence, yet the underlying mechanism remains elusive. We previously identified the master regulator Znf2 that controls the yeast-to-hypha transition in Cryptococcus. Activation of Znf2 promotes hyphal formation and abolishes fungal virulence in vivo. Here we demonstrated that the cryptococcal strain overexpressing ZNF2 elicited strong and yet temporally confined proinflammatory responses in the early stage of infection. In contrast, exacerbated inflammation in mice infected with the wild-type (WT) strain showed that they were unable to control the infection. Animals inoculated with this filamentous Cryptococcus strain had fewer pulmonary eosinophils and CD11c(+) CD11b(+) cells than animals inoculated with WT yeast. Moreover, mice infected with this strain developed protective Th1- or Th17-type T cell responses. These findings suggest that the virulence attenuation of the filamentous form is likely due to its elicitation of protective host responses. The antivirulence effect of Znf2 was independent of two previously identified factors downstream of Znf2. Interestingly, mucosal immunizations with high doses of ZNF2-overexpressing cells, either in the live or heat-killed form, offered 100% protection to the host from a subsequent challenge with the otherwise lethal clinical strain H99. Our results demonstrate that heat-resistant cellular components presented in cryptococcal cells with activated ZNF2 elicit protective host immune responses. These findings could facilitate future research on novel immunological therapies. IMPORTANCE: Cryptococcal meningitis is one of the leading causes of death among AIDS patients. This disease presents a severe threat to public health. The current antifungal regimens are unsatisfactory in controlling or clearing the pathogen Cryptococcus neoformans. Immunotherapies and/or vaccines could be a promising approach to prevent or manage this deadly disease. However, the lack of understanding of host-pathogen interactions during cryptococcal infection greatly hampers the development of effective immunotherapies. In this study, we discovered that inoculation of cryptococcal cells with activated Znf2, a morphogenesis regulator and an antivirulence factor, could shift the host pathological Th2 responses to the protective Th1 or Th17 responses. Importantly, we discovered that vaccination with either the viable or heat-killed form of ZNF2-overexpressing cells protected animals from the otherwise lethal infection by the highly virulent clinical strain. Our study suggests that the fungal cellular component(s) of the ZNF2-overexpressing strain may provide potential vaccine candidate(s) for controlling the fatal disease.


Asunto(s)
Criptococosis/prevención & control , Cryptococcus neoformans/inmunología , Vacunas Fúngicas/inmunología , Hifa/inmunología , Inmunidad Celular , Inflamación/inmunología , Animales , Criptococosis/inmunología , Cryptococcus neoformans/genética , Modelos Animales de Enfermedad , Vacunas Fúngicas/administración & dosificación , Regulación Fúngica de la Expresión Génica , Hifa/genética , Ratones , Mutación , Análisis de Supervivencia , Vacunas Atenuadas/administración & dosificación , Vacunas Atenuadas/inmunología , Vacunas de Productos Inactivados/administración & dosificación , Vacunas de Productos Inactivados/inmunología
14.
Mycologia ; 107(2): 298-306, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25550299

RESUMEN

Aspergillus nidulans StuA and Neurospora crassa ASM-1 are orthologous APSES (ASM-1, PHD1, SOK2, Efg1, StuA) transcription factors conserved across a diverse group of fungi. StuA and ASM-1 have roles in asexual (conidiation) and sexual (ascospore formation) development in both organisms. To address the hypothesis that the last common ancestor of these diverse fungi regulated conidiation with similar genes, asm-1 was introduced into the stuA1 mutant of A. nidulans. Expression of asm-1 complemented defective conidiophore morphology and restored conidia production to wild type levels in stuA1. Expression of asm-1 in the stuA1 strain did not rescue the defect in sexual development. When the conidiation regulator AbaA was tagged at its C-terminus with GFP in A. nidulans, it localized to nuclei in phialides. When expressed in the stuA1 mutant, AbaA::GFP localized to nuclei in conidiophores but no longer was confined to phialides, suggesting that expression of AbaA in specific cell types of the conidiophore was conditioned by StuA. Our data suggest that the function in conidiation of StuA and ASM-1 is conserved and support the view that, despite the great morphological and ontogenic diversity of their condiphores, the last common ancestor of A. nidulans and N. crassa produced an ortholog of StuA that was involved in conidiophore development.


Asunto(s)
Aspergillus nidulans/crecimiento & desarrollo , Proteínas Fúngicas/genética , Neurospora crassa/genética , Esporas Fúngicas/crecimiento & desarrollo , Factores de Transcripción/genética , Aspergillus nidulans/genética , Aspergillus nidulans/metabolismo , Proteínas Fúngicas/metabolismo , Regulación Fúngica de la Expresión Génica , Prueba de Complementación Genética , Neurospora crassa/crecimiento & desarrollo , Neurospora crassa/metabolismo , Esporas Fúngicas/genética , Esporas Fúngicas/metabolismo , Factores de Transcripción/metabolismo
15.
PLoS Pathog ; 10(6): e1004185, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24901238

RESUMEN

Sexual reproduction in an environmental pathogen helps maximize its lineage fitness to changing environment and the host. For the fungal pathogen Cryptococcus neoformans, sexual reproduction is proposed to have yielded hyper virulent and drug resistant variants. The life cycle of this pathogen commences with mating, followed by the yeast-hypha transition and hyphal growth, and it concludes with fruiting body differentiation and sporulation. How these sequential differentiation events are orchestrated to ensure developmental continuality is enigmatic. Here we revealed the genetic network of the yeast-to-hypha transition in Cryptococcus by analyzing transcriptomes of populations with a homogeneous morphotype generated by an engineered strain. Among this network, we found that a Pumilio-family protein Pum1 and the matricellular signal Cfl1 represent two major parallel circuits directing the yeast-hypha transition. Interestingly, only Pum1 coordinates the sequential morphogenesis events during a-α bisexual and α unisexual reproduction. Pum1 initiates the yeast-to-hypha transition, partially through a novel filament-specific secretory protein Fas1; Pum1 is also required to sustain hyphal growth after the morphological switch. Furthermore, Pum1 directs subsequent differentiation of aerial hyphae into fruiting bodies in both laboratory and clinical isolates. Pum1 exerts its control on sexual reproduction partly through regulating the temporal expression of Dmc1, the meiosis-specific recombinase. Therefore, Pum1 serves a pivotal role in bridging post-mating morphological differentiation events with sexual reproduction in Cryptococcus. Our findings in Cryptococcus illustrate how an environmental pathogen can ensure the completion of its life cycle to safeguard its long-term lineage success.


Asunto(s)
Cryptococcus neoformans/crecimiento & desarrollo , Hifa/crecimiento & desarrollo , Morfogénesis/genética , Proteínas de Unión al ARN/metabolismo , Animales , Proteínas de Ciclo Celular/biosíntesis , Proteínas de Ciclo Celular/genética , Cofilina 1/biosíntesis , Cofilina 1/genética , Cofilina 1/metabolismo , Criptococosis/patología , Cryptococcus neoformans/genética , Ácido Graso Sintasas/biosíntesis , Ácido Graso Sintasas/genética , Femenino , Proteínas Fúngicas/biosíntesis , Proteínas Fúngicas/genética , Técnicas de Inactivación de Genes , Genes del Tipo Sexual de los Hongos , Hifa/citología , Estadios del Ciclo de Vida , Meiosis/genética , Ratones , Ratones Endogámicos A , Proteínas de Unión al ARN/biosíntesis , Proteínas de Unión al ARN/genética , Reproducción Asexuada/genética , Levaduras/citología , Levaduras/crecimiento & desarrollo , Dedos de Zinc/genética
16.
Eukaryot Cell ; 12(12): 1641-52, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24123270

RESUMEN

Aspergillus fumigatus produces heavily melanized infectious conidia. The conidial melanin is associated with fungal virulence and resistance to various environmental stresses. This 1,8-dihydroxynaphthalene (DHN) melanin is synthesized by enzymes encoded in a gene cluster in A. fumigatus, including two laccases, Abr1 and Abr2. Although this gene cluster is not conserved in all aspergilli, laccases are critical for melanization in all species examined. Here we show that the expression of A. fumigatus laccases Abr1/2 is upregulated upon hyphal competency and drastically increased during conidiation. The Abr1 protein is localized at the surface of stalks and conidiophores, but not in young hyphae, consistent with the gene expression pattern and its predicted role. The induction of Abr1/2 upon hyphal competency is controlled by BrlA, the master regulator of conidiophore development, and is responsive to the copper level in the medium. We identified a developmentally regulated putative copper transporter, CtpA, and found that CtpA is critical for conidial melanization under copper-limiting conditions. Accordingly, disruption of CtpA enhanced the induction of abr1 and abr2, a response similar to that induced by copper starvation. Furthermore, nonpigmented ctpAΔ conidia elicited much stronger immune responses from the infected invertebrate host Galleria mellonella than the pigmented ctpAΔ or wild-type conidia. Such enhancement in eliciting Galleria immune responses was independent of the ctpAΔ conidial viability, as previously observed for the DHN melanin mutants. Taken together, our findings indicate that both copper homeostasis and developmental regulators control melanin biosynthesis, which affects conidial surface properties that shape the interaction between this pathogen and its host.


Asunto(s)
Aspergillus fumigatus/enzimología , Cobre/metabolismo , Proteínas Fúngicas/metabolismo , Regulación del Desarrollo de la Expresión Génica , Lacasa/metabolismo , Melaninas/biosíntesis , Aspergillus fumigatus/genética , Aspergillus fumigatus/crecimiento & desarrollo , Aspergillus fumigatus/metabolismo , Proteínas Fúngicas/genética , Regulación Enzimológica de la Expresión Génica , Regulación Fúngica de la Expresión Génica , Hifa/enzimología , Hifa/genética , Hifa/crecimiento & desarrollo , Lacasa/genética , Naftoles , Esporas Fúngicas/enzimología , Esporas Fúngicas/genética , Esporas Fúngicas/crecimiento & desarrollo
17.
Infect Immun ; 81(7): 2626-37, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23670559

RESUMEN

Cryptococcus neoformans is an unconventional dimorphic fungus that can grow either as a yeast or in a filamentous form. To facilitate investigation of genetic factors important for its morphogenesis and pathogenicity, congenic a and α strains for a filamentous form were constructed. XL280 (α) was selected as the background strain because of its robust ability to undergo the morphological transition from yeast to the filamentous form. The MATa allele from a sequenced strain JEC20 was introgressed into the XL280 background to generate the congenic a and α pair strains. The resulting congenic strains were then used to test the impact of mating type on virulence. In both the inhalation and the intravenous infection models of murine cryptococcosis, the congenic a and α strains displayed comparable levels of high virulence. The a-α coinfections displayed equivalent virulence to the individual a or α infections in both animal models. Further analyses of the mating type distribution in a-α coinfected mice suggested no influence of a-α interactions on cryptococcal neurotropism, irrespective of the route of inoculation. Furthermore, deletion or overexpression of a known transcription factor, Znf2, in XL280 abolished or enhanced filamentation and biofilm formation, consistent with its established role. Overexpression of Znf2 in XL280 led to attenuation of virulence and a reduced abundance in the brain but not in other organs, suggesting that Znf2 might interfere with cryptococcal neurotropism upon extrapulmonary dissemination. In summary, the congenic strains provide a new resource for the exploration of the relationship in Cryptococcus between cellular morphology and pathogenesis.


Asunto(s)
Biopelículas , Criptococosis/microbiología , Cryptococcus neoformans/genética , Cryptococcus neoformans/patogenicidad , Genes Fúngicos , Animales , Encéfalo/microbiología , Encéfalo/patología , Coinfección/microbiología , Cruzamientos Genéticos , Cryptococcus neoformans/clasificación , Femenino , Marcadores Genéticos , Ratones , Ratones Endogámicos A , Modelos Animales , Morfogénesis , Técnicas de Tipificación Micológica , Fenotipo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Transcripción Genética , Virulencia
18.
Fungal Biol ; 115(6): 541-6, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21640317

RESUMEN

Actin plays multiple complex roles in cell growth and cell shape. Recently it was demonstrated that actin patches, which represent sites of endocytosis, are present in a sub-apical collar at growing tips of hyphae and germ tubes of filamentous fungi. It is now clear that this zone of endocytosis is necessary for filamentous growth to proceed. In this review evidence for the role of these endocytic sites in hyphal growth is examined. One possibility if that the role of the sub-apical collar is associated with endocytic recycling of polarized material at the hyphal tip. The 'Apical Recycling Model' accounts for this role and predicts the need for a balance between endocytosis and exocytosis at the hyphal tip to control growth and cell shape. Other cell differentiation events, including appressorium formation and Aspergillus conidiophore development may also be explained by this model.


Asunto(s)
Proteínas Fúngicas/metabolismo , Hongos/metabolismo , Hifa/crecimiento & desarrollo , Endocitosis , Exocitosis , Proteínas Fúngicas/genética , Hongos/genética , Hongos/crecimiento & desarrollo , Hifa/genética , Hifa/metabolismo
19.
Fungal Genet Biol ; 48(4): 370-6, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21220038

RESUMEN

Aspergillus nidulans and Neurospora crassa are ascomycetes that produce asexual spores through morphologically distinct processes. MedA, a protein with unknown function, is required for normal asexual and sexual development in A. nidulans. We determined that the N. crassa ortholog of medA is acon-3, a gene required for early conidiophore development and female fertility. To test hypotheses about the evolutionary origins of asexual development in distinct fungal lineages it is important to understand the degree of conservation of developmental regulators. The amino acid sequences of A. nidulans MedA and N. crassa ACON-3 shared 37% identity and 51% similarity. acon-3 is induced at late time points of conidiation. In contrast, medA is constitutively expressed and MedA protein localizes to nuclei in all tissue types. Nonetheless, expression of acon-3 using its native promoter complemented the conidiation defects of the A. nidulans ΔmedA and medA15 mutants. We conclude that the biochemical activity of the medA orthologs is conserved for conidiation.


Asunto(s)
Aspergillus nidulans/crecimiento & desarrollo , Aspergillus nidulans/genética , Proteínas Fúngicas/metabolismo , Neurospora crassa/crecimiento & desarrollo , Neurospora crassa/genética , Esporas Fúngicas/crecimiento & desarrollo , Esporas Fúngicas/genética , ADN de Hongos/química , ADN de Hongos/genética , Proteínas Fúngicas/genética , Perfilación de la Expresión Génica , Prueba de Complementación Genética , Datos de Secuencia Molecular , Análisis de Secuencia de ADN , Homología de Secuencia de Aminoácido
20.
Mol Microbiol ; 68(3): 690-705, 2008 May.
Artículo en Inglés | MEDLINE | ID: mdl-18331474

RESUMEN

Filamentous fungi are ideal systems to study the process of polarized growth, as their life cycle is dominated by hyphal growth exclusively at the cell apex. The actin cytoskeleton plays an important role in this growth. Until now, there have been no tools to visualize actin or the actin-binding protein fimbrin in live cells of a filamentous fungus. We investigated the roles of actin (ActA) and fimbrin (FimA) in hyphal growth in Aspergillus nidulans. We examined the localization of ActA::GFP and FimA::GFP in live cells, and each displayed a similar localization pattern. In actively growing hyphae, cortical ActA::GFP and FimA::GFP patches were highly mobile throughout the hypha and were concentrated near hyphal apices. A patch-depleted zone occupied the apical 0.5 microm of growing hypha. Both FimA::GFP and Act::GFP also localize transiently to septa. Movement and later localization of both was compromised after cytochalasin treatment. Disruption of fimA resulted in delayed polarity establishment during conidium germination, abnormal hyphal growth and endocytosis defects in apolar cells. Endocytosis was severely impaired in apolar fimA disruption cells. Our data support a novel apical recycling model which indicates a critical role for actin patch-mediated endocytosis to maintain polarized growth at the apex.


Asunto(s)
Actinas/metabolismo , Aspergillus nidulans/citología , Endocitosis , Proteínas Fúngicas/metabolismo , Hifa/citología , Glicoproteínas de Membrana/metabolismo , Proteínas de Microfilamentos/metabolismo , Actinas/análisis , Actinas/genética , Aspergillus nidulans/crecimiento & desarrollo , Proteínas Fúngicas/análisis , Proteínas Fúngicas/genética , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Hifa/crecimiento & desarrollo , Glicoproteínas de Membrana/análisis , Glicoproteínas de Membrana/genética , Proteínas de Microfilamentos/análisis , Proteínas de Microfilamentos/genética , Proteínas Recombinantes de Fusión/análisis , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA