Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Physiol Rep ; 12(11): e16055, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38872474

RESUMEN

This study examined the effects of exercise and detraining at a young age on fat accumulation in various organs. Four-week-old male Otsuka Long-Evans Tokushima Fatty (OLETF) rats were assigned to either the non-exercise sedentary (OLETF Sed) or exercise groups. The exercise group was subdivided into two groups: exercise between 4 and 12 weeks of age (OLETF Ex) and exercise between 4 and 6 weeks of age followed by non-exercise between 6 and 12 weeks of age (OLETF DT). Body weight was significantly lower in the OLETF Ex group than in the OLETF Sed group at 12 weeks of age. Fat accumulation in the epididymal white adipose tissue, liver, and brown adipose tissue was suppressed in the OLETF Ex group. During the exercise period, body weight and food intake in the OLETF DT group were significantly lower than those in the OLETF Sed group. However, food intake was significantly higher in the OLETF DT group than in the OLETF Sed group after exercise cessation, resulting in extreme obesity with fatty liver and brown adipose tissue whitening. Detraining after early-onset exercise promotes hyperphagia, causing extreme obesity. Overeating should be avoided during detraining periods in cases of exercise cessation at a young age.


Asunto(s)
Tejido Adiposo Pardo , Hígado Graso , Hiperfagia , Obesidad , Condicionamiento Físico Animal , Ratas Endogámicas OLETF , Animales , Masculino , Tejido Adiposo Pardo/metabolismo , Hiperfagia/fisiopatología , Hiperfagia/metabolismo , Ratas , Hígado Graso/metabolismo , Hígado Graso/etiología , Obesidad/metabolismo , Obesidad/fisiopatología , Obesidad/etiología , Ingestión de Alimentos , Hígado/metabolismo , Peso Corporal
2.
Behav Brain Res ; 459: 114786, 2024 02 29.
Artículo en Inglés | MEDLINE | ID: mdl-38036265

RESUMEN

Anxiety commonly co-occurs with and exacerbates pain, but the interaction between pain progression and anxiety, and its underlying mechanisms remain unclear. Inhibitory interneurons play a crucial role in maintaining normal central nervous system function and are suggested to be involved in pain-induced anxiety. This study aimed to elucidate the time-dependent effects of neuropathic pain on the developmental anxiety-like behaviors and related inhibitory interneurons; parvalbumin (PV)- and cholecystokinin (CCK)-positive neurons in corticolimbic regions. Using an 8-week-old male Wistar rat model with partial sciatic nerve ligation (pSNL), anxiety-like behaviors were biweekly assessed post-surgery through open field (OF) and elevated plus maze (EPM) tests. From 4 weeks post-surgery, pSNL rats exhibited reduced OF center time, rearing, and initial activity, along with diminished EPM open-arm activities (time spent, head dips, movement, and rearing), which correlated with the paw withdrawal threshold. These effects were absent at 2 weeks post-surgery. At 8 weeks post-surgery, specific behaviors (decreased total rearing and increased inactive time in EPM) were observed in the pSNL group. Immunohistochemistry revealed changes in PV- and CCK-positive neurons in specific corticolimbic subregions of pSNL rats at 8 weeks post-surgery. Notably, PV-positive neuron densities in the basolateral amygdaloid complex (BLC) and hippocampal cornu ammonis areas 1 and 2 correlated with anxiety-like behavioral parameters. PV-positive neurons in the BLC of pSNL rats were predominantly changed in large-cell subtypes and were less activated. These findings indicate that anxiety-like behaviors emerge in the late phase of neuropathic pain and relate to PV-positive neurons in corticolimbic regions of pSNL rats.


Asunto(s)
Dolor Crónico , Neuralgia , Parvalbúminas , Animales , Masculino , Ratas , Ansiedad , Neuralgia/metabolismo , Neuronas/metabolismo , Parvalbúminas/metabolismo , Ratas Wistar , Dolor Crónico/metabolismo
3.
Cereb Cortex ; 33(22): 11157-11169, 2023 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-37757479

RESUMEN

Precision walking (PW) incorporates precise step adjustments into regular walking patterns to navigate challenging surroundings. However, the brain processes involved in PW control, which encompass cortical regions and interregional interactions, are not fully understood. This study aimed to investigate the changes in regional activity and effective connectivity within the frontoparietal network associated with PW. Functional near-infrared spectroscopy data were recorded from adult subjects during treadmill walking tasks, including normal walking (NOR) and PW with visual cues, wherein the intercue distance was either fixed (FIX) or randomly varied (VAR) across steps. The superior parietal lobule (SPL), dorsal premotor area (PMd), supplementary motor area (SMA), and dorsolateral prefrontal cortex (dlPFC) were specifically targeted. The results revealed higher activities in SMA and left PMd, as well as left-to-right SPL connectivity, in VAR than in FIX. Activities in SMA and right dlPFC, along with dlPFC-to-SPL connectivity, were higher in VAR than in NOR. Overall, these findings provide insights into the roles of different brain regions and connectivity patterns within the frontoparietal network in facilitating gait control during PW, providing a useful baseline for further investigations into brain networks involved in locomotion.


Asunto(s)
Mapeo Encefálico , Señales (Psicología) , Adulto , Humanos , Caminata , Encéfalo , Espectroscopía Infrarroja Corta
4.
Eur Neurol ; 86(2): 121-127, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36516790

RESUMEN

INTRODUCTION: The effect of early initiation of gait training using hybrid assistive limb (HAL) remains unclear. This observational study aimed to investigate whether early initiation of gait training using HAL improves functional outcomes in patients with stroke. METHODS: We retrospectively analyzed patients with acute stroke admitted to our facility. HAL was used for exoskeletal robotic gait training. Study participants were median split into an early group and a late group based on the days from stroke onset to initiation of gait training using HAL. The functional outcomes, defined by the Brunnstrom recovery stage (BRS), modified Rankin Scale (mRS), and Functional Independence Measure (FIM) at discharge, were compared using propensity score-matched analysis. RESULTS: We performed a propensity score-matched analysis in 63 patients with stroke (31 from the early group and 32 from the late group), and 17 pairs were matched. There were no significant differences in discharge in the BRS of the upper limb and finger in the post-matched cohort. On the other hand, the BRS of the lower limb in the early group was significantly higher than that in the late group. In addition, the mRS, but not FIM scores, was significantly better in the early group than that in the late group. CONCLUSIONS: In conclusion, early initiation of gait training using HAL might improve the motor function of the paralyzed lower limb and disability in patients with stroke.


Asunto(s)
Trastornos Neurológicos de la Marcha , Procedimientos Quirúrgicos Robotizados , Rehabilitación de Accidente Cerebrovascular , Accidente Cerebrovascular , Humanos , Estudios Retrospectivos , Trastornos Neurológicos de la Marcha/rehabilitación , Marcha
5.
PLoS One ; 17(6): e0270330, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35749411

RESUMEN

The preventive effects of regular exercise on obesity-related health problems are carried over to the non-exercise detraining period, even when physical activity decreases with aging. However, it remains unknown whether regular childhood exercises can be carried over to adulthood. Therefore, this study aimed to investigate the effects of long-term childhood exercise and detraining on lipid accumulation in organs to prevent obesity in adulthood. Four-week-old male Otsuka Long-Evans Tokushima Fatty (OLETF) rats were used as obese animals. OLETF rats were allocated into sedentary and exercise groups: exercise from 4- to 12-week-old and detraining from 12- to 20-week-old. At 12-week-old immediately after the exercise period, regular exercise completely inhibited hyperphagia, obesity, enlarged pancreatic islets, lipid accumulation and lobular inflammation in the liver, hypertrophied adipocytes in the white adipose tissue (WAT), and brown adipose tissue (BAT) whitening in OLETF rats. Additionally, exercise attenuated the decrease in the ratio of muscle wet weight to body weight associated with obesity. Decreased food consumption was maintained during the detraining period, which inhibited obesity and diabetes at 20-week-old after the detraining period. Histologically, childhood exercise inhibited the enlargement of pancreatic islets after the detraining period. In addition, inhibition of lipid accumulation was completely maintained in the WAT and BAT after the detraining period. However, the effectiveness was only partially successful in lipid accumulation and inflammation in the liver. The ratio of muscle wet weight to body weight was maintained after detraining. In conclusion, early long-term regular exercise effectively prevents obesity and diabetes in childhood, and its effectiveness can be tracked later in life. The present study suggests the importance of exercise during childhood and adolescence to inhibit hyperphagia-induced lipid accumulation in metabolic-related organs in adulthood despite exercise cessation.


Asunto(s)
Hiperfagia , Obesidad , Adulto , Animales , Ejercicio Físico , Humanos , Inflamación , Lípidos , Masculino , Obesidad/patología , Obesidad/prevención & control , Ratas , Ratas Endogámicas OLETF
6.
Brain Behav ; 12(7): e2681, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35701382

RESUMEN

INTRODUCTION: Interacting with the environment requires the planning and execution of reach-to-target movements along given reach trajectory paths. Human neural mechanisms for the motor planning of linear, or point-to-point, reaching movements are relatively well studied. However, the corresponding representations for curved and more complex reaching movements require further investigation. Additionally, the visual and proprioceptive feedback of hand positioning can be spatially and sequentially coupled in alignment (e.g., directly reaching for an object), termed coupled visuomotor feedback, or spatially decoupled (e.g., dragging the computer mouse forward to move the cursor upward), termed decoupled visuomotor feedback. During reach planning, visuomotor processing routes may differ across feedback types. METHODS: We investigated the involvement of the frontoparietal regions, including the superior parietal lobule (SPL), dorsal premotor cortex (PMd), and dorsolateral prefrontal cortex (dlPFC), in curved reach planning under different feedback conditions. Participants engaged in two delayed-response reaching tasks with identical starting and target position sets but different reach trajectory paths (linear or curved) under two feedback conditions (coupled or decoupled). Neural responses in frontoparietal regions were analyzed using a combination of functional near-infrared spectroscopy and electroencephalography. RESULTS: The results revealed that, regarding the cue period, curved reach planning had a higher hemodynamic response in the left SPL and bilateral PMd and a smaller high-beta power in the left parietal regions than linear reach planning. Regarding the delay period, higher hemodynamic responses during curved reach planning were observed in the right dlPFC for decoupled feedback than those for coupled feedback. CONCLUSION: These findings suggest the crucial involvement of both SPL and PMd activities in trajectory-path processing for curved reach planning. Moreover, the dlPFC may be especially involved in the planning of curved reaching movements under decoupled feedback conditions. Thus, this study provides insight into the neural mechanisms underlying reaching function via different feedback conditions.


Asunto(s)
Desempeño Psicomotor , Espectroscopía Infrarroja Corta , Electroencefalografía , Retroalimentación , Humanos , Movimiento/fisiología , Lóbulo Parietal/diagnóstico por imagen , Lóbulo Parietal/fisiología , Desempeño Psicomotor/fisiología
7.
Front Neurorobot ; 16: 795079, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35370598

RESUMEN

Assistive exoskeleton robots are being widely applied in neurorehabilitation to improve upper-limb motor and somatosensory functions. During robot-assisted exercises, the central nervous system appears to highly attend to external information-processing (IP) to efficiently interact with robotic assistance. However, the neural mechanisms underlying this process remain unclear. The rostromedial prefrontal cortex (rmPFC) may be the core of the executive resource allocation that generates biases in the allocation of processing resources toward an external IP according to current behavioral demands. Here, we used functional near-infrared spectroscopy to investigate the cortical activation associated with executive resource allocation during a robot-assisted motor task. During data acquisition, participants performed a right-arm motor task using elbow flexion-extension movements in three different loading conditions: robotic assistive loading (ROB), resistive loading (RES), and non-loading (NON). Participants were asked to strive for kinematic consistency in their movements. A one-way repeated measures analysis of variance and general linear model-based methods were employed to examine task-related activity. We demonstrated that hemodynamic responses in the ventral and dorsal rmPFC were higher during ROB than during NON. Moreover, greater hemodynamic responses in the ventral rmPFC were observed during ROB than during RES. Increased activation in ventral and dorsal rmPFC subregions may be involved in the executive resource allocation that prioritizes external IP during human-robot interactions. In conclusion, these findings provide novel insights regarding the involvement of executive control during a robot-assisted motor task.

8.
Behav Brain Res ; 428: 113886, 2022 06 25.
Artículo en Inglés | MEDLINE | ID: mdl-35398486

RESUMEN

Diabetes mellitus induces neuropsychiatric comorbidities at an early stage, which can be ameliorated by exercise. However, the neurobiological mechanisms underlying this ameliorative effect remain unclear. The present study was conducted in Otsuka Long-Evans Tokushima fatty (OLETF) rats, which develop diabetes with age, and aimed to investigate whether social and anxiety-like behaviors and neurobiological changes associated with these behavioral phenotypes were reversed by voluntary exercise and whether those were maintained in the later stage. We investigated the effects of exercise at different diabetic stages in OLETF rats by comparing with control rats. Three groups of OLETF rats were used: sedentary rats, rats exercising on a wheel for two weeks at 4-5 weeks of age (early voluntary exercise), and those exercising at 10-11 weeks of age (late voluntary exercise). In the elevated plus-maze test, both early and late voluntary exercises did not affect anxiety-like behavior. In the social interaction tests, both early and late voluntary exercises ameliorated impaired sociability, novel exploration deficits, and hypoactivity in OLETF rats. Both early and late voluntary exercises reversed the increases in cholecystokinin-positive neuron densities in the infralimbic cortex and hippocampal cornu ammonis area 3 in the OLETF rats, although they did not affect the area-reduction in the medial prefrontal cortex and the increase in cholecystokinin-positive neuron densities in the basolateral amygdala. These suggest that voluntary exercise has therapeutic effects on impaired sociability and novel exploration deficits associated with cholecystokinin-positive neurons in specific corticolimbic regions in OLETF rats, and those are maintained after early exercise.


Asunto(s)
Diabetes Mellitus Tipo 2 , Diabetes Mellitus , Animales , Colecistoquinina , Neuronas , Ratas , Ratas Endogámicas OLETF , Conducta Social
9.
Metabolites ; 11(10)2021 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-34677392

RESUMEN

This study aimed to investigate the influence of childhood exercise and detraining on brown adipose tissue (BAT) whitening in obesity. Four-week-old male Long-Evans Tokushima Otsuka (LETO) rats (n = 9) and Otsuka Long-Evans Tokushima Fatty (OLETF) rats (n = 24) were used as non-obese and obese animals, respectively. OLETF rats were divided into non-exercise sedentary (n = 9) and exercise groups. OLETF rats in the exercise group were further divided into subgroups according to the exercise period-exercise from 10- to 12-weeks-old (n = 6); and exercise from 4- to 6-weeks-old, and detraining from 6- to 12-weeks-old (n = 9). At 12-weeks-old, immediately after exercise period, BAT whitening in OLETF rats was inhibited by exercise despite the fact that hypertrophy was not caused in the plantaris muscle. However, the effectiveness was attenuated during the detraining period. Histological BAT whitening and downregulation of uncoupling protein-1 (UCP-1) were found in non-exercise sedentary OLETF rats at 12-weeks-old. The downregulation was not inhibited, even though exercise histologically inhibited BAT whitening in OLETF rats. Childhood exercise decreased BAT whitening in obesity. Detraining attenuated the inhibition of BAT whitening. These results suggest that regular exercise is needed to improve BAT whitening and downregulation of UCP-1 in obesity.

10.
PLoS One ; 16(9): e0256655, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34506507

RESUMEN

Metabolic disorders are associated with a higher risk of psychiatric disorders. We previously reported that 20-week-old Otsuka Long-Evans Tokushima fatty (OLETF) rats, a model of progressive type 2 diabetes, showed increased anxiety-like behavior and regional area reductions and increased cholecystokinin-positive neurons in the corticolimbic system. However, in which stages of diabetes these alterations in OLETF rats occur remains unclear. We aimed to investigate anxiety-like behavior and its possible mechanisms at different stages of type 2 diabetes in OLETF rats. Eight- and 30-week-old OLETF rats were used as diabetic animal models at the prediabetic and progressive stages of type 2 diabetes respectively, and age-matched Long-Evans Tokushima Otsuka rats served as non-diabetic controls. In the open-field test, OLETF rats showed less locomotion in the center zone and longer latency to leave the center zone at 8 and 30 weeks old, respectively. The areas of the medial prefrontal cortex were smaller in the OLETF rats, regardless of age. The densities of cholecystokinin-positive neurons in OLETF rats were higher in the lateral and basolateral amygdala only at 8 weeks old and in the anterior cingulate and infralimbic cortices and hippocampal cornu ammonis area 3 at both ages. The densities of parvalbumin-positive neurons of OLETF rats were lower in the cornu ammonis area 2 at 8 weeks old and in the prelimbic and infralimbic cortices at both ages. No apoptotic cell death was detected in OLETF rats, but the percentage of neurons co-expressing activating transcription factor 4 and cholecystokinin and parvalbumin was higher in OLETF rats at both ages in the anterior cingulate cortex and basolateral amygdala, respectively. These results suggest that altered emotional behavior and related neurological changes in the corticolimbic system are already present in the prediabetic stage of OLETF rats.


Asunto(s)
Factor de Transcripción Activador 4/metabolismo , Colecistoquinina/metabolismo , Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Parvalbúminas/metabolismo , Animales , Conducta Animal , Encéfalo/metabolismo , Encéfalo/patología , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patología , Diabetes Mellitus Experimental/psicología , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patología , Diabetes Mellitus Tipo 2/psicología , Masculino , Ratas , Ratas Endogámicas OLETF
11.
AIMS Neurosci ; 8(1): 148-160, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33490376

RESUMEN

Individuals with autism spectrum disorder (ASD) show impairments in processing social cues such as facial expressions and gaze direction. Several researchers have proposed that autistic traits form a continuum that may be distributed within the general, typically developed, population. Accordingly, several studies have indicated that typically developed individuals with high levels of self-reported autistic traits have autistic-like performance in a variety of paradigms. Here, we designed a gaze-cueing task to examine whether gaze-triggered orienting is related to the extent of typically developed (TD) individuals' autistic traits (determined by their AQ test scores) and whether it is modulated by previous eye contact and different facial expressions. At each trial, TD subjects observed faces with or without eye contact. This facial stimulus then gazed toward the left or right side. Finally, a target appeared on the left or right side of the display and reaction time (RT) to the target was measured. RTs were modulated by congruency between gazing directions and target locations, and by prior eye contact in the congruent trials. In addition, individuals with higher AQ scores were slower at detecting the target when the cue was a happy face. Furthermore, faster RTs in congruent trials were associated with one specific autistic trait (attention switching deficits). Together, these results indicate that autistic traits may influence performance in a gaze cueing task.

12.
J Physiol Sci ; 70(1): 42, 2020 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-32938363

RESUMEN

Metabolic disorders can induce psychiatric comorbidities. Both brain and neuronal composition imbalances reportedly induce an anxiety-like phenotype. We hypothesized that alterations of localized brain areas and cholecystokinin (CCK) and parvalbumin (PV) expression could induce anxiety-like behavior in type 2 diabetic Otsuka Long-Evans Tokushima fatty (OLETF) rats. Twenty-week-old OLETF and non-diabetic Long-Evans Tokushima Otsuka (LETO) rats were used. The areas of corticolimbic regions were smaller in OLETF rats. The densities of CCK positive neurons in the lateral and basolateral amygdala, hippocampal cornu ammonis area 2, and prelimbic cortex were higher in OLETF rats. The densities of PV positive neurons were comparable between OLETF and LETO rats. Locomotion in the center zone in the open field test was lower in OLETF rats. These results suggest that imbalances of specific brain region areas and neuronal compositions in emotion-related areas increase the prevalence of anxiety-like behaviors in OLETF rats.


Asunto(s)
Ansiedad/etiología , Conducta Animal , Encéfalo/metabolismo , Colecistoquinina/metabolismo , Diabetes Mellitus Tipo 2/complicaciones , Neuronas/metabolismo , Animales , Ansiedad/metabolismo , Ansiedad/fisiopatología , Ansiedad/psicología , Encéfalo/fisiopatología , Modelos Animales de Enfermedad , Emociones , Locomoción , Masculino , Prueba de Campo Abierto , Parvalbúminas/metabolismo , Ratas Endogámicas OLETF
13.
Front Neurosci ; 14: 34, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32116496

RESUMEN

To develop a real-time neurofeedback system from the anterior prefrontal cortex (aPFC) using functional near-infrared spectroscopy (fNIRS) for motor rehabilitation, we investigated the effects of motor imagery training with neurofeedback from the aPFC on hand dexterity and cerebral hemodynamic activity during a motor rehabilitation task. Thirty-one right-handed healthy subjects participated in this study. They received motor imagery training six times for 2 weeks under fNIRS neurofeedback from the aPFC, in which they were instructed to increase aPFC activity. The real group subjects (n = 16) were shown real fNIRS neurofeedback signals from the aPFC, whereas the sham group subjects (n = 15) were shown irrelevant randomized signals during neurofeedback training. Before and after the training, hand dexterity was assessed by a motor rehabilitation task, during which cerebral hemodynamic activity was also measured. The results indicated that aPFC activity was increased during the training, and performance improvement rates in the rehabilitation task after the training was increased in the real group when compared with the sham group. Improvement rates of mean aPFC activity across the training were positively correlated with performance improvement rates in the motor rehabilitation task. During the motor rehabilitation task after the training, the hemodynamic activity in the left somatosensory motor-related areas [premotor area (PM), primary motor area (M1), and primary somatosensory area (S1)] was increased in the real group, whereas the hemodynamic activity was increased in the supplementary motor area in the sham group. This hemodynamic activity increases in the somatosensory motor-related areas after the training correlated with aPFC activity during the last 2 days of motor imagery training. Furthermore, improvement rates of M1 hemodynamic activity after the training was positively correlated with performance improvement rates in the motor rehabilitation task. The results suggest that the aPFC might shape activity in the somatosensory motor-related areas to improve hand dexterity. These findings further suggest that the motor imagery training using neurofeedback signals from the aPFC might be useful to patients with motor disability.

14.
Biomed Res ; 41(1): 23-32, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32092737

RESUMEN

Mild hyperbaric treatment prevents type 2 diabetes progression due to increased oxygen concentration and blood flow in skeletal muscle. However, it remains unknown whether this treatment is effective during all stages of type 2 diabetes. This study aimed to investigate the influences of hyperbaric treatment at 1.3 atmospheres absolute (ATA) on hemodynamic response in various stages of type 2 diabetes. Otsuka Long-Evans Tokushima fatty (OLETF) and Long-Evans Tokushima Otsuka (LETO) rats were used as models of type 2 diabetes and healthy controls, respectively. Glucose levels were significantly higher in OLETF rats than in LETO rats at all ages. Glucose intolerance gradually increased with age in OLETF rats. Insulin levels in OLETF rats were significantly higher at 20-week-old, however, were significantly lower at 60-week-old than in LETO rats. Oxy-Hb, total Hb, and StO2 in skeletal muscle were increased during hyperbaric treatment in both rats. The hemodynamic changes were significantly higher in OLETF rats than LETO rats, and those changes were also pronounced at 8-week-old compared with other age in OLETF rats. These results suggest that hyperbaric treatment at 1.3 ATA acts on pathophysiological factors and the efficacy could be found only in the early stage of type 2 diabetes.


Asunto(s)
Diabetes Mellitus Tipo 2/fisiopatología , Diabetes Mellitus Tipo 2/terapia , Hemodinámica , Oxigenoterapia Hiperbárica/métodos , Músculo Esquelético/patología , Animales , Glucemia/metabolismo , Peso Corporal , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Prueba de Tolerancia a la Glucosa , Insulina/metabolismo , Músculo Esquelético/metabolismo , Oxígeno/metabolismo , Oxígeno/uso terapéutico , Ratas , Ratas Endogámicas OLETF
15.
J Appl Physiol (1985) ; 128(2): 296-306, 2020 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-31999528

RESUMEN

Delayed-onset muscle soreness (DOMS) is a common but displeasing event induced by excessive muscle use or unaccustomed exercise and characterized by tenderness and movement-related pain in the exercised muscle. Thermal therapies, either icing or heating applied to muscles immediately after exercise, have been used as therapeutic interventions for DOMS. However, the mechanisms of their analgesic effects, and physiological and metabolic changes in the muscle during thermal therapy, remain unclear. In the present study, we investigated the effects of both thermal treatments on mechanical hyperalgesia of DOMS and physiological and muscle metabolite changes using the rat DOMS model induced by lengthening contraction (LC) to the gastrocnemius muscle. Heating treatment just after LC induced analgesic effects, while rats with icing treatment showed mechanical hyperalgesia similar to that of the LC group. Furthermore, increased physiological responses (e.g., muscle temperature and blood flow) following the LC were significantly kept high only in the rats with heating treatment. In addition, heating treatment increased metabolites involved in the improvement of blood flow and oxidative metabolisms in the exercised muscle. The results indicated that heating treatment just after LC has analgesic effects on DOMS, which might be mediated partly through the improvement of muscle oxidative metabolisms by changes in metabolites and elevated physiological responses.NEW & NOTEWORTHY Physiological effects of thermal therapy in the muscle and its mechanisms of analgesic effects remain unclear. The results indicated that heating, but not icing, treatment just after lengthening contractions induced analgesic effects in the rat muscle. Increases in hemodynamics, muscle temperature, and metabolites such as nicotinamide were more prominent in heating treatment, consistent with improvement of muscle oxidative metabolisms, which might reduce chemical factors to induce mechanical hyperalgesia.


Asunto(s)
Analgesia/métodos , Hiperalgesia , Contracción Muscular , Músculo Esquelético/fisiología , Mialgia/terapia , Condicionamiento Físico Animal , Animales , Frío , Calor , Hiperalgesia/terapia , Ratas , Ratas Sprague-Dawley
16.
J Diabetes Res ; 2019: 2694215, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31828157

RESUMEN

Hyperbaric treatment improves hyperglycemia and hyperinsulinemia in type 2 diabetes associated with obesity. However, its mode of action is unknown. The purpose of the present study was to investigate the influences of regular hyperbaric treatment with normal air at 1.3 atmospheres absolute (ATA) on glucose tolerance in type 2 diabetes with obesity. The focus was directed on inflammatory cytokines in the adipose tissue and skeletal muscle. Otsuka Long-Evans Tokushima Fatty (OLETF) rats were used as models of type 2 diabetes with obesity and Long-Evans Tokushima Otsuka (LETO) rats served as healthy controls. The rats were randomly assigned to untreated or hyperbaric treatment groups exposed to 1.3 ATA for 8 h d-1 and 5 d wk-1 for 16 wks. Glucose levels were significantly higher in the diabetic than in the healthy control rats. Nevertheless, glucose levels at 30 and 60 min after glucose administration were significantly lower in the diabetic rats treated with 1.3 ATA than in the untreated diabetic rats. Insulin levels at fasting and 120 min after glucose administration were significantly lower in the diabetic rats treated with 1.3 ATA than in the untreated diabetic rats. Hyperbaric treatment also increased interleukin-10 (IL-10) expression in the skeletal muscle and decreased tumor necrosis factor α (TNFα) expression in adipose tissue. These results suggested that TNFα downregulation and IL-10 upregulation in diabetic rats subjected to hyperbaric treatment participate in the crosstalk between the adipose and skeletal muscle tissues and improve glucose intolerance.


Asunto(s)
Presión del Aire , Glucemia/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Insulina/metabolismo , Obesidad/metabolismo , Tejido Adiposo/metabolismo , Animales , Prueba de Tolerancia a la Glucosa , Inflamación/genética , Inflamación/metabolismo , Interleucina-10/genética , Interleucina-10/metabolismo , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Interleucina-6/genética , Interleucina-6/metabolismo , Masculino , Músculo Esquelético/metabolismo , Obesidad/inmunología , ARN Mensajero/metabolismo , Ratas , Ratas Endogámicas OLETF , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/metabolismo
17.
J Bodyw Mov Ther ; 22(3): 810-816, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-30100317

RESUMEN

Previous research suggests that aging-related deterioration of oral functions causes not only eating/swallowing disorders but also various conditions such as sleep disorders and higher-order brain dysfunction. The aim of the present study was to examine the effects of lip closure training on eating behavior, sleep, and brain function in elderly persons residing in an elder care facility. The 20 elderly subjects (mean age, 86.3 ± 1.0 years) were assigned to a control group or a lip closure training (LCT) group, in which an oral rehabilitation device was used for daily LCT sessions over a 4-week period. Before and after the 4-week intervention period, maximal lip closure force was measured, and prefrontal cortical hemodynamic activity (changes in oxygenated hemoglobin concentration) during lip closure movements was measured with (LCT group) or without (control group) use of the oral rehabilitation device. We also analyzed eating behavior and daytime sleep before and after the intervention period. Compared with the control group, the LCT group showed improved maximal lip closure force, shortened eating time, decreased food spill rates, and decreased daytime sleeping. Furthermore, compared with the control group, the LCT group showed a significant increase in prefrontal cortical activity during lip closure. In addition, the increase rate in the right dorsolateral prefrontal cortical activity after the intervention period was significantly correlated with the increase rate in the maximal lip closure force after the intervention period. These findings suggest that LCT is useful in elderly individuals with decreased eating/oral and cognitive functions without the risk of pulmonary aspiration during training.


Asunto(s)
Trastornos de Deglución/prevención & control , Trastornos de Somnolencia Excesiva/prevención & control , Terapia por Ejercicio/métodos , Conducta Alimentaria , Labio/fisiología , Anciano , Anciano de 80 o más Años , Trastornos de Deglución/complicaciones , Trastornos de Somnolencia Excesiva/complicaciones , Femenino , Hemodinámica , Humanos , Masculino , Fuerza Muscular/fisiología , Resultado del Tratamiento
18.
PLoS One ; 13(5): e0196895, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29718998

RESUMEN

Although exercise is effective in improving obesity and hyperinsulinemia, the exact influence of exercise on the capillary density of skeletal muscles remains unknown. The aim of this study was to investigate the effects of low-intensity exercise training on metabolism in obesity with hyperinsulinemia, focusing specifically on the capillary density within the skeletal muscle. Otsuka Long-Evans Tokushima fatty (OLETF) rats were used as animal models of obesity with hyperinsulinemia, whereas Long-Evans Tokushima Otsuka (LETO) rats served as controls (no obesity, no hyperinsulinemia). The animals were randomly assigned to either non-exercise or exercise groups (treadmill running for 60 min/day, for 4 weeks). The exercise groups were further divided into subgroups according to training mode: single bout (60 min, daily) vs. multiple bout (three bouts of 20 min, daily). Fasting insulin levels were significantly higher in OLETF than in LETO rats. Among OLETF rats, there were no significant differences in fasting glucose levels between the exercise and the non-exercise groups, but the fasting insulin levels were significantly lower in the exercise group. Body weight and triacylglycerol levels in the liver were significantly higher in OLETF than in LETO rats; however, among OLETF rats, these levels were significantly lower in the exercise than in the non-exercise group. The capillary-to-fiber ratio of the soleus muscle was significantly higher in OLETF than in LETO rats; however, among OLETF rats, the ratio was lower in the exercise group than in the non-exercise group. No significant differences in any of the studied parameters were noted between the single-bout and multiple-bout exercise training modes among either OLETF or LETO rats. These results suggest that low-intensity exercise training improves insulin sensitivity and fatty liver. Additionally, the fact that attenuation of excessive capillarization in the skeletal muscle of OLETF rats was accompanied by improvement in increased body weight.


Asunto(s)
Capilares/patología , Hiperinsulinismo/sangre , Músculo Esquelético/irrigación sanguínea , Obesidad/sangre , Adiponectina/sangre , Animales , Glucemia , Terapia por Ejercicio , Ácidos Grasos/sangre , Hiperinsulinismo/patología , Hiperinsulinismo/terapia , Insulina/sangre , Metabolismo de los Lípidos , Masculino , Músculo Esquelético/metabolismo , Obesidad/patología , Obesidad/terapia , Ratas Endogámicas OLETF , Triglicéridos/sangre , Factor de Necrosis Tumoral alfa/sangre
19.
Front Neurosci ; 11: 186, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28442987

RESUMEN

Compression at myofascial trigger points (MTrPs), known as "ischemic compression," has been reported to provide immediate relief of musculoskeletal pain and reduce the sympathetic activity that exacerbates chronic pain. We conducted a pilot study to investigate the possible involvement of the prefrontal cortex in pain relief obtained by MTrP compression in the present study, and analyzed the relationships among prefrontal hemodynamic activity, activity of the autonomic nervous system, and subjective pain in patients with chronic neck pain, with and without MTrP compression. Twenty-one female subjects with chronic neck pain were randomly assigned to two groups: MTrP compression (n = 11) or Non-MTrP compression (n = 10). Compression for 30 s was conducted 4 times. During the experiment, prefrontal hemodynamic activity [changes in Oxy-hemoglobin (Hb), Deoxy-Hb, and Total-Hb concentrations] and autonomic activity based on heart rate variability (HRV) were monitored by using near infrared spectroscopy (NIRS) and electrocardiography (ECG), respectively. The results indicated that MTrP compression significantly reduced subjective pain compared with Non-MTrP compression. The spectral frequency-domain analyses of HRV indicated that a low frequency (LF) component of HRV was decreased, and a high frequency (HF) component of HRV was increased during MTrP compression, while LF/HF ratio was decreased during MTrP compression. In addition, prefrontal hemodynamic activity was significantly decreased during MTrP compression compared with Non-MTrP compression. Furthermore, changes in autonomic activity were significantly correlated with changes in subjective pain and prefrontal hemodynamic activity. Along with previous studies indicating a role for sympathetic activity in the exacerbation of chronic pain, the present results suggest that MTrP compression in the neck region alters the activity of the autonomic nervous system via the prefrontal cortex to reduce subjective pain.

20.
Front Neurosci ; 10: 399, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27703429

RESUMEN

Although, clinical studies reported hyperactivation of the auditory system and amygdala in patients with auditory hallucinations (hearing others' but not one's own voice, independent of any external stimulus), neural mechanisms of self/other attribution is not well understood. We recorded neuronal responses in the dorsal amygdala including the lateral amygdaloid nucleus to ultrasonic vocalization (USVs) emitted by subjects and conspecifics during free social interaction in 16 adult male rats. The animals emitting the USVs were identified by EMG recordings. One-quarter of the amygdalar neurons (15/60) responded to 50 kHz calls by the subject and/or conspecifics. Among the responsive neurons, most neurons (Type-Other neurons; 73%, 11/15) responded only to calls by conspecifics but not subjects. Two Type-Self neurons (13%, 2/15) responded to calls by the subject but not those by conspecifics, although their response selectivity to subjects vs. conspecifics was lower than that of Type-Other neurons. The remaining two neurons (13%) responded to calls by both the subject and conspecifics. Furthermore, population coding of the amygdalar neurons represented distinction of subject vs. conspecific calls. The present results provide the first neurophysiological evidence that the amygdala discriminately represents affective social calls by subject and conspecifics. These findings suggest that the amygdala is an important brain region for self/other attribution. Furthermore, pathological activation of the amygdala, where Type-Other neurons predominate, could induce external misattribution of percepts of vocalization.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...