Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Virol ; 98(7): e0071424, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-38809021

RESUMEN

Lassa virus (LASV) is the causative agent of human Lassa fever which in severe cases manifests as hemorrhagic fever leading to thousands of deaths annually. However, no approved vaccines or antiviral drugs are currently available. Recently, we screened approximately 2,500 compounds using a recombinant vesicular stomatitis virus (VSV) expressing LASV glycoprotein GP (VSV-LASVGP) and identified a P-glycoprotein inhibitor as a potential LASV entry inhibitor. Here, we show that another identified candidate, hexestrol (HES), an estrogen receptor agonist, is also a LASV entry inhibitor. HES inhibited VSV-LASVGP replication with a 50% inhibitory concentration (IC50) of 0.63 µM. Importantly, HES also inhibited authentic LASV replication with IC50 values of 0.31 µM-0.61 µM. Time-of-addition and cell-based membrane fusion assays suggested that HES inhibits the membrane fusion step during virus entry. Alternative estrogen receptor agonists did not inhibit VSV-LASVGP replication, suggesting that the estrogen receptor itself is unlikely to be involved in the antiviral activity of HES. Generation of a HES-resistant mutant revealed that the phenylalanine at amino acid position 446 (F446) of LASVGP, which is located in the transmembrane region, conferred resistance to HES. Although mutation of F446 enhanced the membrane fusion activity of LASVGP, it exhibited reduced VSV-LASVGP replication, most likely due to the instability of the pre-fusion state of LASVGP. Collectively, our results demonstrated that HES is a promising anti-LASV drug that acts by inhibiting the membrane fusion step of LASV entry. This study also highlights the importance of the LASVGP transmembrane region as a target for anti-LASV drugs.IMPORTANCELassa virus (LASV), the causative agent of Lassa fever, is the most devastating mammarenavirus with respect to its impact on public health in West Africa. However, no approved antiviral drugs or vaccines are currently available. Here, we identified hexestrol (HES), an estrogen receptor agonist, as the potential antiviral candidate drug. We showed that the estrogen receptor itself is not involved in the antiviral activity. HES directly bound to LASVGP and blocked membrane fusion, thereby inhibiting LASV infection. Through the generation of a HES-resistant virus, we found that phenylalanine at position 446 (F446) within the LASVGP transmembrane region plays a crucial role in the antiviral activity of HES. The mutation at F446 caused reduced virus replication, likely due to the instability of the pre-fusion state of LASVGP. These findings highlight the potential of HES as a promising candidate for the development of antiviral compounds targeting LASV.


Asunto(s)
Antivirales , Fiebre de Lassa , Virus Lassa , Internalización del Virus , Replicación Viral , Virus Lassa/efectos de los fármacos , Internalización del Virus/efectos de los fármacos , Humanos , Antivirales/farmacología , Replicación Viral/efectos de los fármacos , Animales , Chlorocebus aethiops , Fiebre de Lassa/virología , Fiebre de Lassa/tratamiento farmacológico , Células Vero , Receptores de Estrógenos/metabolismo , Proteínas del Envoltorio Viral/metabolismo , Proteínas del Envoltorio Viral/genética , Línea Celular , Fenilalanina/farmacología , Fenilalanina/análogos & derivados
2.
Microbiol Spectr ; 12(5): e0041724, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38606982

RESUMEN

Paramyxo- and filovirus genomes are equipped with bipartite promoters at their 3' ends to initiate RNA synthesis. The two elements, the primary promoter element 1 (PE1) and the secondary promoter element 2 (PE2), are separated by a spacer region that must be precisely a multiple of 6 nucleotides (nts), indicating these viruses adhere to the "rule of six." However, our knowledge of PE2 has been limited to a narrow spectrum of virus species. In this study, a comparative analysis of 1,647 paramyxoviral genomes from a public database revealed that the paramyxovirus PE2 can be clearly categorized into two distinct subcategories: one marked by C repeats at every six bases (exclusive to the subfamily Orthoparamyxovirinae) and another characterized by CG repeats every 6 nts (observed in the subfamilies Avulavirinae and Rubulavirinae). This unique pattern collectively mirrors the evolutionary lineage of these subfamilies. Furthermore, we showed that PE2 of the Rubulavirinae, with the exception of mumps virus, serves as part of the gene-coding region. This may be due to the fact that the Rubulavirinae are the only paramyxoviruses that cannot propagate without RNA editing. Filoviruses have three to eight consecutive uracil repeats every six bases (UN5) in PE2, which is located in the 3' end region of the genome. We obtained PE2 sequences from 2,195 filoviruses in a public database and analyzed the sequence conservation among virus species. Our results indicate that the continuity of UN5 hexamers is consistently maintained with a high degree of conservation across virus species. IMPORTANCE: The genomic intricacies of paramyxo- and filoviruses are highlighted by the bipartite promoters-promoter element 1 (PE1) and promoter element 2 (PE2)-at their 3' termini. The spacer region between these elements follows the "rule of six," crucial for genome replication. By a comprehensive analysis of paramyxoviral genome sequences, we identified distinct subcategories of PE2 based on C and CG repeats that were specific to Orthoparamyxovirinae and Avulavirinae/Rubulavirinae, respectively, mirroring their evolutionary lineages. Notably, the PE2 of Rubulavirinae is integrated into the gene-coding region, a unique trait potentially linked to its strict dependence on RNA editing for virus growth. This study also focused on the PE2 sequences in filovirus genomes. The strict conservation of the continuity of UN5 among virus species emphasizes its crucial role in viral genome replication.


Asunto(s)
Filoviridae , Genoma Viral , Filogenia , Regiones Promotoras Genéticas , Regiones Promotoras Genéticas/genética , Genoma Viral/genética , Filoviridae/genética , Filoviridae/clasificación , Paramyxoviridae/genética , Paramyxoviridae/clasificación , Humanos , ARN Viral/genética , Evolución Molecular , Animales
3.
Biochem Biophys Res Commun ; 678: 193-199, 2023 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-37651888

RESUMEN

Severely immunodeficient mice are useful for understanding the pathogenesis of certain tumors and for developing therapeutic agents for such tumors. In addition, engraftment of these mice with human hematopoietic cells can yield information that helps us understand the in vivo molecular mechanisms underlying actual human viral infections. In our present research, we discovered a novel, severely immunodeficient strain of mice having a mutation in exon 57 of the Prkdc gene (PrkdcΔex57/Δex57) in an inbred colony of B10.S/SgSlc mice. Those PrkdcΔex57/Δex57 mice showed thymic hypoplasia and lack of mature T cells and B cells in peripheral lymphoid tissues, resulting in very low levels of production of serum immunoglobulins. In addition, those mice were highly susceptible to influenza viruses due to the lack of acquired immune cells. On the other hand, since they had sufficient numbers of NK cells, they rejected tumor transplants, similarly to Prkdc+/+ mice. Next, we generated Foxn1nu/nuPrkdcΔex57/Δex57Il2rg-/- (NPG) mice on the BALB/cSlc background, which lack all lymphocytes such as T cells, B cells and innate lymphoid cells, including NK cells. As expected, these mice were able to undergo engraftment of human tumor cell lines. These findings suggest that PrkdcΔex57/Δex57 mice will be useful as a novel model of immunodeficiency, while NPG mice will be useful for xenografting of various malignancies.


Asunto(s)
Inmunidad Innata , Síndromes de Inmunodeficiencia , Humanos , Animales , Ratones , Células Asesinas Naturales , Linfocitos B , Línea Celular Tumoral , Proteínas de Unión al ADN , Proteína Quinasa Activada por ADN
4.
J Virol ; 97(3): e0001523, 2023 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-36794941

RESUMEN

Negative-strand RNA viruses (NSVs) represent one of the most threatening groups of emerging viruses globally. Severe fever with thrombocytopenia syndrome virus (SFTSV) is a highly pathogenic emerging virus that was initially reported in 2011 from China. Currently, no licensed vaccines or therapeutic agents have been approved for use against SFTSV. Here, L-type calcium channel blockers obtained from a U.S. Food and Drug Administration (FDA)-approved compound library were identified as effective anti-SFTSV compounds. Manidipine, a representative L-type calcium channel blocker, restricted SFTSV genome replication and exhibited inhibitory effects against other NSVs. The result from the immunofluorescent assay suggested that manidipine inhibited SFTSV N-induced inclusion body formation, which is believed to be important for the virus genome replication. We have shown that calcium possesses at least two different roles in regulating SFTSV genome replication. Inhibition of calcineurin, the activation of which is triggered by calcium influx, using FK506 or cyclosporine was shown to reduce SFTSV production, suggesting the important role of calcium signaling on SFTSV genome replication. In addition, we showed that globular actin, the conversion of which is facilitated by calcium from filamentous actin (actin depolymerization), supports SFTSV genome replication. We also observed an increased survival rate and a reduction of viral load in the spleen in a lethal mouse model of SFTSV infections after manidipine treatment. Overall, these results provide information regarding the importance of calcium for NSV replication and may thereby contribute to the development of broad-scale protective therapies against pathogenic NSVs. IMPORTANCE SFTS is an emerging infectious disease and has a high mortality rate of up to 30%. There are no licensed vaccines or antivirals against SFTS. In this article, L-type calcium channel blockers were identified as anti-SFTSV compounds through an FDA-approved compound library screen. Our results showed the involvement of L-type calcium channel as a common host factor for several different families of NSVs. The formation of an inclusion body, which is induced by SFTSV N, was inhibited by manidipine. Further experiments showed that SFTSV replication required the activation of calcineurin, a downstream effecter of the calcium channel. In addition, we identified that globular actin, the conversion of which is facilitated by calcium from filamentous actin, supports SFTSV genome replication. We also observed an increased survival rate in a lethal mouse model of SFTSV infection after manidipine treatment. These results facilitate both our understanding of the NSV replication mechanism and the development of novel anti-NSV treatment.


Asunto(s)
Infecciones por Bunyaviridae , Calcio , Phlebovirus , Animales , Ratones , Actinas/metabolismo , Infecciones por Bunyaviridae/virología , Calcineurina/metabolismo , Calcio/metabolismo , Bloqueadores de los Canales de Calcio/farmacología , Bloqueadores de los Canales de Calcio/uso terapéutico , Modelos Animales de Enfermedad , Phlebovirus/efectos de los fármacos , Phlebovirus/fisiología , Replicación Viral/efectos de los fármacos , Replicación Viral/fisiología , Bazo/virología , Carga Viral
5.
Microbiol Immunol ; 67(3): 105-113, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36604771

RESUMEN

The bone marrow (BM) stromal cell antigen-2 (BST-2), also known as tetherin, CD317, PDCA-1, or HM1.24, is a membrane protein overexpressed in several types of tumors and may act as a promising target for cancer treatment via antibody-dependent cellular cytotoxicity. BST-2 is also expressed in human BM stromal cells (BMSC), which support B cell development. While the activity of BST-2 as an antiviral factor has been demonstrated, the expression patterns and the role of BST-2 on B-cell development and activation have not been investigated, especially in vivo. In this study, Bst2 knockout (Bst2-/- ) mice were generated to assess the role of BST-2 on B cell development and activation. It was observed that BST-2 was not expressed in BMSC or all B cell progenitors even in wild-type mice and does not play a significant role in B cell development. In addition, the loss of BST-2 had no effect on B cell activation. Furthermore and in contrast to the well-known antiviral role of BST-2, infection of vesicular stomatitis Indiana virus to the BM cells collected from the Bst2-/- mice produced less infectious virus compared with that from the WT mice. These results suggest that murine BST-2 is different from human BST-2 in the expression pattern, physiological function, in vivo, and might possess positive role on VSV replication.


Asunto(s)
Antígeno 2 del Estroma de la Médula Ósea , Animales , Humanos , Ratones , Proteínas de la Membrana , Virus de la Estomatitis Vesicular Indiana , Antígeno 2 del Estroma de la Médula Ósea/metabolismo
6.
PLoS Pathog ; 18(7): e1010689, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35816544

RESUMEN

Favipiravir is a nucleoside analogue that inhibits the replication and transcription of a broad spectrum of RNA viruses, including pathogenic arenaviruses. In this study, we isolated a favipiravir-resistant mutant of Junin virus (JUNV), which is the causative agent of Argentine hemorrhagic fever, and analyzed the antiviral mechanism of favipiravir against JUNV. Two amino acid substitutions, N462D in the RNA-dependent RNA polymerase (RdRp) and A168T in the glycoprotein precursor GPC, were identified in the mutant. GPC-A168T substitution enhanced the efficiency of JUNV internalization, which explains the robust replication kinetics of the mutant in the virus growth analysis. Although RdRp-N462D substitution did not affect polymerase activity levels in a minigenome system, comparisons of RdRp error frequencies showed that the virus with RdRp-D462 possessed a significantly higher fidelity. Our next generation sequence (NGS) analysis showed a gradual accumulation of both mutations as we passaged the virus in presence of favipiravir. We also provided experimental evidence for the first time that favipiravir inhibited JUNV through the accumulation of transition mutations, confirming its role as a purine analogue against arenaviruses. Moreover, we showed that treatment with a combination of favipiravir and either ribavirin or remdesivir inhibited JUNV replication in a synergistic manner, blocking the generation of the drug-resistant mutant. Our findings provide new insights for the clinical management and treatment of Argentine hemorrhagic fever.


Asunto(s)
Arenavirus , Fiebre Hemorrágica Americana , Virus Junin , Amidas , Antivirales/farmacología , Antivirales/uso terapéutico , Fiebre Hemorrágica Americana/tratamiento farmacológico , Humanos , Virus Junin/genética , Pirazinas , ARN Polimerasa Dependiente del ARN/genética , Replicación Viral
7.
Antiviral Res ; 199: 105267, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35227759

RESUMEN

The central role of Ebola virus (EBOV) VP40 in nascent virion assembly and budding from infected host cells makes it an important therapeutic target. The mechanism of dimerization, following oligomerization of VP40 leading to the production of virus-like particles (VLP) has never been investigated for the development of therapeutic candidates against Ebola disease. Molecular dynamics-based computational screening targeted VP40 dimer with 40,000,000 compounds selected 374 compounds. A novel in vitro screening assay selected two compounds, NUSU#1 and NUSU#2. Conventional VLP assays consistently showed that both compounds inhibited EBOV VP40-mediated VLP production. Intriguingly, NUSU#1 inhibited the VP40-mediated VLP production in other ebolavirus species and the Marburg virus, but did not inhibit Lassa virus Z-mediated VLP production. These results strongly suggested that the selected compounds are potential lead drug candidates against Filovirus disease via disruption of VP40-mediated particle production.


Asunto(s)
Ebolavirus , Fiebre Hemorrágica Ebola , Marburgvirus , Ebolavirus/química , Humanos , Proteínas de la Matriz Viral/química , Liberación del Virus
8.
Antiviral Res ; 200: 105276, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35278582

RESUMEN

Crimean-Congo hemorrhagic fever virus (CCHFV) belongs to the genus Orthonairovirus and is the causative agent of a viral hemorrhagic disease with a case fatality rate of 30%. However, limited studies have been conducted to explore antiviral compounds specific to CCHFV. In this study, we developed a minigenome system of orthonairoviruses, CCHFV and Hazara virus to analyze viral replication and screened an FDA-approved compound library. The transfection of the minigenome components induced marked increase in luciferase expression, indicating the sufficient replication and translation of reporter RNA. Compound library screening identified 14 candidate compounds that significantly decreased luciferase activity. Some of the compounds also inhibited the replication of the infectious Hazara virus. The mechanism of inhibition by tigecycline was further analyzed, and a decrease in the interaction between the viral N protein and RNA by tigecycline was observed. This work provides a basis for validation using animal models and the design of chemical derivatives with stronger activity in future studies on the development of an antiviral against CCHFV.


Asunto(s)
Virus de la Fiebre Hemorrágica de Crimea-Congo , Fiebre Hemorrágica de Crimea , Animales , Antivirales/farmacología , Virus de la Fiebre Hemorrágica de Crimea-Congo/fisiología , Fiebre Hemorrágica de Crimea/tratamiento farmacológico , Fiebre Hemorrágica de Crimea/prevención & control , Nucleoproteínas , ARN , Tigeciclina/farmacología
10.
Viruses ; 15(1)2022 12 30.
Artículo en Inglés | MEDLINE | ID: mdl-36680145

RESUMEN

Although many arenaviruses cause severe diseases with high fatality rates each year, treatment options are limited to off-label use of ribavirin, and a Food and Drug Administration (FDA)-approved vaccine is not available. To identify novel therapeutic candidates against arenaviral diseases, an RNA polymerase I-driven minigenome (MG) expression system for Lassa virus (LASV) was developed and optimized for high-throughput screening (HTS). Using this system, we screened 2595 FDA-approved compounds for inhibitors of LASV genome replication and identified multiple compounds including pixantrone maleate, a topoisomerase II inhibitor, as hits. Other tested topoisomerase II inhibitors also suppressed LASV MG activity. These topoisomerase II inhibitors also inhibited Junin virus (JUNV) MG activity and effectively limited infection by the JUNV Candid #1 strain, and siRNA knockdown of both topoisomerases (IIα and IIß) restricted JUNV replication. These results suggest that topoisomerases II regulate arenavirus replication and can serve as molecular targets for panarenaviral replication inhibitors.


Asunto(s)
Arenavirus , Virus Junin , Antivirales/farmacología , ADN-Topoisomerasas de Tipo II/genética , Virus Junin/fisiología , Virus Lassa , Inhibidores de Topoisomerasa II/farmacología , Humanos
11.
Uirusu ; 72(1): 7-18, 2022.
Artículo en Japonés | MEDLINE | ID: mdl-37899233

RESUMEN

South American Hemorrhagic Fever is caused by the Arenavirus, which belong to the Family Arenaviridae, genus mammarenavirus, infection at South America. South American Hemorrhagic Fever includes 1. Argentinian Hemorrhagic fever caused by Junin virus, 2. Brazilian hemorrhagic fever caused by Sabia virus, 3. Venezuelan Hemorrhagic fever caused by Guanarito virus, 4. Bolivian Hemorrhagic fever caused by Machupo virus, and 5. Unassigned hemorrhagic fever caused by Chapare virus. These viruses are classified in New World (NW) Arenavirus, which is different from Old World Arenavirus (ex. Lassa virus), based on phylogeny, serology, and geographic differences. In this review, the current knowledge of the biology and the development of the vaccines and antivirals of NW Arenaviruses which cause South American Hemorrhagic Fever will be described.

12.
Uirusu ; 72(2): 125-130, 2022.
Artículo en Japonés | MEDLINE | ID: mdl-38220156

RESUMEN

In recent years, numerous emerging and reemerging infectious diseases have occurred worldwide and have seriously threatened our society. As a countermeasure against the pathogens responsible for serious diseases (classified as class 4 pathogens), we are preparing for full operation of the first suit-type biosafety level 4 (BSL-4) facility available for basic and applied research at Nagasaki University. For the safe operation of these facilities, experienced and qualified personnel with appropriate skills and knowledge of biorisk management must be certified. Developing an appropriate training system is a prerequisite for ensuring the safety of users involved in research in a BSL-4 laboratory. Here, we introduce an overview of the content of the training program that we are currently establishing for the BSL-4 facility at Nagasaki University. We are designing this program to follow national and international guidelines and regulations in part by referring to experiences and materials derived from multiple BSL-4 facilities in other countries. The established training program system, including the formulation processes, will serve as a reference and will provide practical materials for other research organizations to develop their own high-containment laboratory training programs.

13.
Viruses ; 13(9)2021 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-34578344

RESUMEN

Lassa virus (LASV)-a member of the family Arenaviridae-causes Lassa fever in humans and is endemic in West Africa. Currently, no approved drugs are available. We screened 2480 small compounds for their potential antiviral activity using pseudotyped vesicular stomatitis virus harboring the LASV glycoprotein (VSV-LASVGP) and a related prototypic arenavirus, lymphocytic choriomeningitis virus (LCMV). Follow-up studies confirmed that CP100356 hydrochloride (CP100356), a specific P-glycoprotein (P-gp) inhibitor, suppressed VSV-LASVGP, LCMV, and LASV infection with half maximal inhibitory concentrations of 0.52, 0.54, and 0.062 µM, respectively, without significant cytotoxicity. Although CP100356 did not block receptor binding at the cell surface, it inhibited low-pH-dependent membrane fusion mediated by arenavirus glycoproteins. P-gp downregulation did not cause a significant reduction in either VSV-LASVGP or LCMV infection, suggesting that P-gp itself is unlikely to be involved in arenavirus entry. Finally, our data also indicate that CP100356 inhibits the infection by other mammarenaviruses. Thus, our findings suggest that CP100356 can be considered as an effective virus entry inhibitor for LASV and other highly pathogenic mammarenaviruses.


Asunto(s)
Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/efectos de los fármacos , Arenaviridae/metabolismo , Isoquinolinas/farmacología , Virus Lassa/efectos de los fármacos , Quinazolinas/farmacología , Internalización del Virus/efectos de los fármacos , Animales , Antivirales/farmacología , Chlorocebus aethiops , Humanos , Fiebre de Lassa/tratamiento farmacológico , Fiebre de Lassa/virología , Virus de la Coriomeningitis Linfocítica , Receptores Virales , Células Vero , Estomatitis Vesicular/virología , Inhibidores de Proteínas Virales de Fusión/farmacología
14.
Viruses ; 13(7)2021 06 24.
Artículo en Inglés | MEDLINE | ID: mdl-34202565

RESUMEN

Arenaviruses and coronaviruses include several human pathogenic viruses, such as Lassa virus, Lymphocytic choriomeningitis virus (LCMV), SARS-CoV, MERS-CoV, and SARS-CoV-2. Although these viruses belong to different virus families, they possess a common motif, the DED/EDh motif, known as an exonuclease (ExoN) motif. In this study, proof-of-concept studies, in which the DED/EDh motif in these viral proteins, NP for arenaviruses, and nsp14 for coronaviruses, could be a drug target, were performed. Docking simulation studies between two structurally different chemical compounds, ATA and PV6R, and the DED/EDh motifs in these viral proteins indicated that these compounds target DED/EDh motifs. The concentration which exhibited modest cell toxicity was used with these compounds to treat LCMV and SARS-CoV-2 infections in two different cell lines, A549 and Vero 76 cells. Both ATA and PV6R inhibited the post-entry step of LCMV and SARS-CoV-2 infection. These studies strongly suggest that DED/EDh motifs in these viral proteins could be a drug target to combat two distinct viral families, arenaviruses and coronaviruses.


Asunto(s)
Antivirales/farmacología , Exorribonucleasas/antagonistas & inhibidores , Virus de la Coriomeningitis Linfocítica/efectos de los fármacos , SARS-CoV-2/efectos de los fármacos , Proteínas no Estructurales Virales/antagonistas & inhibidores , Proteínas Virales/antagonistas & inhibidores , Replicación Viral/efectos de los fármacos , Células A549 , Secuencias de Aminoácidos , Animales , Chlorocebus aethiops , Descubrimiento de Drogas , Humanos , Simulación del Acoplamiento Molecular , Células Vero
15.
Antiviral Res ; 192: 105121, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34175321

RESUMEN

Zika virus (ZIKV) is a re-emerging mosquito-borne flavivirus of African origin that is transmitted by Aedes mosquitoes. ZIKV was historically limited to Africa and Asia, where mild cases were reported. However, ZIKV has recently been responsible for major global outbreaks associated with a wide range of neurological complications. Since no antiviral therapy exists for ZIKV, drug discovery research for ZIKV is crucial. Intracellular lipids regulated by sterol regulatory element-binding proteins (SREBPs) are important in flavivirus pathogenesis. PF-429242 has been reported to inhibit the activity of site-1 protease (S1P), which regulates the expression of SREBP target genes. Our primary objective in this study is to elucidate the mechanism of the antiviral activity of PF-429242 against the African genotype (ZIKVMR-766) and Asian genotypes (ZIKV H/PF 2013 and ZIKV PRVABC59) using several primate-derived cell lines. The virus titer was determined via a focus-forming assay; we used flow cytometry to quantify intracellular lipids in ZIKV-infected and mock-treated cells. The PF-429242 molecule effectively suppressed ZIKV infection in neuronal cell lines; T98G, U-87MG, SK-N-SH and primary monocytes cell, indicating that PF-429242 molecule can be used therapeutically. A strong reduction in ZIKV replication was observed at 12 µM and 30 µM in in neuronal cell lines and primary monocytes, respectively. Interestingly, the inhibitory effects of the PF-429242 molecule were observed when it was tested on various ZIKV-lineage infections. Lipid quantification reveals that ZIKV increases lipogenesis in infected cells, while the exogenous addition of cholesterol effectively blocks ZIKV replication. Furthermore, the supplementation of oleic acid increases the ZIKV titer. Fenofibrate, an inhibitor of lipid droplet formation, reduces the ZIKV titer. Collectively, our results demonstrate that the development of antiviral drugs against ZIKV could be based on key regulators of lipid metabolism. In addition, this study reveals that the mechanism of the PF-429242-mediated suppression among flavivirus infections is not entirely identical. Our results warrant further evaluation of PF-429242 as a prospective antiviral drug, given the multiple advantageous properties of this compound, such as its limited toxicity, neuroprotective properties, and broad spectrum of capabilities.


Asunto(s)
Antivirales/farmacología , Pirrolidinas/farmacología , Virus Zika/efectos de los fármacos , Animales , Línea Celular , Fenofibrato/farmacología , Lipogénesis/efectos de los fármacos , Monocitos/efectos de los fármacos , Monocitos/virología , Neuronas/efectos de los fármacos , Neuronas/virología , Replicación Viral/efectos de los fármacos , Infección por el Virus Zika/metabolismo , Infección por el Virus Zika/virología
16.
Viruses ; 13(5)2021 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-34068464

RESUMEN

BACKGROUND: Severe fever with thrombocytopenia syndrome (SFTS) is an emerging tick-borne infectious disease caused by the SFTS virus (SFTSV). SFTS is mainly prevalent in East Asia. It has a mortality rate of up to 30%, and there is no approved treatment against the disease. In this study, we evaluated the effect of loperamide, an antidiarrheal and antihyperalgesic agent, on the propagation of SFTSV in a cell culture system. METHODS: SFTSV-infected human cell lines were exposed to loperamide, and viral titers were evaluated. To clarify the mode of action of loperamide, several chemical compounds having shared targets with loperamide were used. Calcium imaging was also performed to understand whether loperamide treatment affected calcium influx. RESULTS: Loperamide inhibited SFTSV propagation in several cell lines. It inhibited SFTSV in the post-entry step and restricted calcium influx into the cell. Furthermore, nifedipine, a calcium channel inhibitor, also blocked post-entry step of SFTSV infection. CONCLUSIONS: Loperamide inhibits SFTSV propagation mainly by restraining calcium influx into the cytoplasm. This indicates that loperamide, a Food and Drug Administration (FDA)-approved drug, has the potential for being used as a treatment option against SFTS.


Asunto(s)
Loperamida/farmacología , Phlebovirus/efectos de los fármacos , Síndrome de Trombocitopenia Febril Grave/virología , Replicación Viral/efectos de los fármacos , Animales , Calcio/metabolismo , Línea Celular , Células Cultivadas , Humanos , Carga Viral/efectos de los fármacos , Internalización del Virus/efectos de los fármacos
17.
Int J Infect Dis ; 105: 452-459, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33667697

RESUMEN

OBJECTIVES: Lymphocytic choriomeningitis virus (LCMV), a human pathogenic arenavirus, is distributed worldwide. However, no human cases have been reported in Africa. This study aimed to investigate the current situation and potential risks of LCMV infection in Gabon, Central Africa. METHODS: A total of 492 human samples were screened to detect LCMV genome RNA and anti-LCMV IgG antibodies using reverse transcription-quantitative PCR and enzyme-linked immunosorbent assay (ELISA), respectively. ELISA-positive samples were further examined using a neutralization assay. Viral RNAs and antibodies were also analyzed in 326 animal samples, including rodents, shrews, and bushmeat. RESULTS: While no LCMV RNA was detected in human samples, the overall seroprevalence was 21.5% and was significantly higher in male and adult populations. The neutralization assay identified seven samples with neutralizing activity. LCMV RNA was detected in one species of rodent (Lophuromys sikapusi) and a porcupine, and anti-LCMV IgG antibodies were detected in four rodents and three shrews. CONCLUSIONS: This study determined for the first time the seroprevalence of LCMV in Gabon, and revealed that local rodents, shrews, and porcupines in areas surrounding semi-urban cities posed an infection risk. Hence, LCMV infection should be considered a significant public health concern in Africa.


Asunto(s)
Coriomeningitis Linfocítica/epidemiología , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Animales , Anticuerpos Antivirales/sangre , Niño , Preescolar , Femenino , Gabón/epidemiología , Humanos , Lactante , Coriomeningitis Linfocítica/etiología , Virus de la Coriomeningitis Linfocítica/genética , Virus de la Coriomeningitis Linfocítica/inmunología , Masculino , Persona de Mediana Edad , ARN Viral/sangre , Estudios Seroepidemiológicos , Musarañas , Adulto Joven
18.
Cell Struct Funct ; 45(2): 155-163, 2020 Dec 25.
Artículo en Inglés | MEDLINE | ID: mdl-33191384

RESUMEN

The smallest arenavirus gene product, Z protein, plays critical roles in the virus life cycle. Z is the major driving force of budding and particle production because of a unique property that defines self-assembly. In addition to the roles in budding, Z also participates in the suppression of type I interferon production to evade host antiviral immunity. Therefore, Z and its assembled form are an attractive drug target for arenaviral hemorrhagic fever, such as Lassa fever. Here, we developed a biosensor that enabled the evaluation of the prototype arenavirus, lymphocytic choriomeningitis virus (LCMV), Z assembly using the principle of Förster resonance energy transfer (FRET). This FRET biosensor consisted of three tandem Z that were sandwiched between super-enhanced cyan-emitting fluorescent protein and variant of a yellow-emitting mutant of green fluorescent protein so that Z-Z intermolecular binding via the really interesting new gene finger domain increased the emission ratio. To identify novel anti-arenavirus compounds, the FRET biosensor was employed to screen the PathogenBox400 for inhibitors of Z assembly in a 96-well plate format. The assay performed well, with a Z'-factor of 0.89, and identified two compounds that decreased the emission ratio of the FRET biosensor in a dose-dependent manner. Of them, the compound, 5,6,7,8-tetrahydro-7-(benzyl)-pyrido[4',3':4,5]thieno[2,3-d]pyrimidin-2,4-diamine, was found to significantly inhibit LCMV propagation in infected cells. Thereby, the present study demonstrated that a novel FRET biosensor incorporating Z assembly built on FRET and named Zabton, was a valuable screening tool to identify anti-arenavirus compounds in the context of inhibition of Z assembly.Key words: Arenavirus, Förster resonance energy transfer, anti-viral drugs, Z protein.


Asunto(s)
Antivirales , Arenavirus/fisiología , Técnicas Biosensibles , Transferencia Resonante de Energía de Fluorescencia , Proteínas Virales/metabolismo , Ensamble de Virus/efectos de los fármacos , Antivirales/química , Antivirales/farmacología , Evaluación Preclínica de Medicamentos , Células HEK293 , Células HeLa , Humanos
19.
Front Microbiol ; 11: 562814, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33117310

RESUMEN

Several arenaviruses are highly pathogenic to humans, causing hemorrhagic fever. Discovery of anti-arenavirus drug candidates is urgently needed, although the molecular basis of the host- and organ-specific pathogenicity remains to be fully elucidated. The arenavirus Z protein facilitates production of virus-like particles (VLPs), providing an established method to assess virus budding. In this study, we examined the efficiency of VLP production by solely expressing Z protein of several different arenaviruses. In addition, we analyzed the role of the late (L)-domain of the arenavirus Z protein, which is essential for the interaction with ESCRT proteins, in VLP production among different cell lines. VLP assay was performed using Z proteins of Junín virus (JUNV), Machupo virus (MACV), Tacaribe virus (TCRV), Latino virus (LATV), Pichinde virus (PICV), and Lassa virus (LASV) in six different cell lines: HEK293T, Huh-7, A549, Vero76, BHK-21, and NIH3T3 cells. JUNV, MACV, and LASV Z proteins efficiently produced VLPs in all tested cell lines, while the efficiencies of VLP production by the other arenavirus Z proteins were cell type-dependent. The contribution of the L-domain(s) within Z protein to VLP production also highly depended on the cell type. These results suggested that each arenavirus has its own particle-production mechanism, which is different among the cell types.

20.
J Gen Virol ; 101(6): 573-586, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32375950

RESUMEN

Bone marrow stromal cell antigen-2 (BST-2), also known as tetherin, is an interferon-inducible membrane-associated protein. It effectively targets enveloped viruses at the release step of progeny viruses from host cells, thereby restricting the further spread of viral infection. Junin virus (JUNV) is a member of Arenaviridae, which causes Argentine haemorrhagic fever that is associated with a high rate of mortality. In this study, we examined the effect of human BST-2 on the replication and propagation of JUNV. The production of JUNV Z-mediated virus-like particles (VLPs) was significantly inhibited by over-expression of BST-2. Electron microscopy analysis revealed that BST-2 functions by forming a physical link that directly retains VLPs on the cell surface. Infection using JUNV showed that infectious JUNV production was moderately inhibited by endogenous or exogenous BST-2. We also observed that JUNV infection triggers an intense interferon response, causing an upregulation of BST-2, in infected cells. However, the expression of cell surface BST-2 was reduced upon infection. Furthermore, the expression of JUNV nucleoprotein (NP) partially recovered VLP production from BST-2 restriction, suggesting that the NP functions as an antagonist against antiviral effect of BST-2. We further showed that JUNV NP also rescued the production of Ebola virus VP40-mediated VLP from BST-2 restriction as a broad spectrum BST-2 antagonist. To our knowledge, this is the first report showing that an arenavirus protein counteracts the antiviral function of BST-2.


Asunto(s)
Antígenos CD/metabolismo , Interacciones Huésped-Patógeno/fisiología , Virus Junin/fisiología , Nucleoproteínas/metabolismo , Proteínas del Núcleo Viral/metabolismo , Liberación del Virus/fisiología , Células A549 , Antivirales/farmacología , Línea Celular , Línea Celular Tumoral , Proteínas Ligadas a GPI/metabolismo , Células HEK293 , Células HeLa , Interacciones Huésped-Patógeno/efectos de los fármacos , Humanos , Interferones/farmacología , Virus Junin/efectos de los fármacos , Liberación del Virus/efectos de los fármacos , Replicación Viral/efectos de los fármacos , Replicación Viral/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...