Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
1.
Eur J Med Chem ; 264: 116010, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38104375

RESUMEN

The worldwide re-emerge of the Chikungunya virus (CHIKV), the high morbidity associated with it, and the lack of an available vaccine or antiviral treatment make the development of a potent CHIKV-inhibitor highly desirable. Therefore, an extensive lead optimization was performed based on the previously reported CHVB compound 1b and the reported synthesis route was optimized - improving the overall yield in remarkably shorter synthesis and work-up time. Hundred analogues were designed, synthesized, and investigated for their antiviral activity, physiochemistry, and toxicological profile. An extensive structure-activity relationship study (SAR) was performed, which focused mainly on the combination of scaffold changes and revealed the key chemical features for potent anti-CHIKV inhibition. Further, a thorough ADMET investigation of the compounds was carried out: the compounds were screened for their aqueous solubility, lipophilicity, their toxicity in CaCo-2 cells, and possible hERG channel interactions. Additionally, 55 analogues were assessed for their metabolic stability in human liver microsomes (HLMs), leading to a structure-metabolism relationship study (SMR). The compounds showed an excellent safety profile, favourable physicochemical characteristics, and the required metabolic stability. A cross-resistance study confirmed the viral capping machinery (nsP1) to be the viral target of these compounds. This study identified 31b and 34 as potent, safe, and stable lead compounds for further development as selective CHIKV inhibitors. Finally, the collected insight led to a successful scaffold hop (64b) for future antiviral research studies.


Asunto(s)
Fiebre Chikungunya , Virus Chikungunya , Humanos , Células CACO-2 , Antivirales/química , Pirimidinas/farmacología , Fiebre Chikungunya/tratamiento farmacológico , Replicación Viral
2.
Biomolecules ; 13(9)2023 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-37759815

RESUMEN

The high structural similarity, especially in transmembrane regions, of dopamine, norepinephrine, and serotonin transporters, as well as the lack of all crystal structures of human isoforms, make the specific targeting of individual transporters rather challenging. Ligand design itself is also rather limited, as many chemists, fully aware of the synthetic and analytical challenges, tend to modify lead compounds in a way that reduces the number of chiral centers and hence limits the potential chemical space of synthetic ligands. We have previously shown that increasing molecular complexity by introducing additional chiral centers ultimately leads to more selective and potent dopamine reuptake inhibitors. Herein, we significantly extend our structure-activity relationship of dopamine transporter-selective ligands and further demonstrate how stereoisomers of defined absolute configuration may fine-tune and direct the activity towards distinct targets. From the pool of active compounds, using the examples of stereoisomers 7h and 8h, we further showcase how in vitro activity significantly differs in in vivo drug efficacy experiments, calling for proper validation of individual stereoisomers in animal studies. Furthermore, by generating a large library of compounds with defined absolute configurations, we lay the groundwork for computational chemists to further optimize and rationally design specific monoamine transporter reuptake inhibitors.


Asunto(s)
Proteínas de Transporte de Noradrenalina a través de la Membrana Plasmática , Proteínas de Transporte de Serotonina en la Membrana Plasmática , Animales , Humanos , Proteínas de Transporte de Serotonina en la Membrana Plasmática/metabolismo , Transporte Biológico , Relación Estructura-Actividad , Norepinefrina , Ligandos
3.
Int J Mol Sci ; 24(11)2023 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-37298523

RESUMEN

Cortisol is a potent human steroid hormone that plays key roles in the central nervous system, influencing processes such as brain neuronal synaptic plasticity and regulating the expression of emotional and behavioral responses. The relevance of cortisol stands out in the disease, as its dysregulation is associated with debilitating conditions such as Alzheimer's Disease, chronic stress, anxiety and depression. Among other brain regions, cortisol importantly influences the function of the hippocampus, a structure central for memory and emotional information processing. The mechanisms fine-tuning the different synaptic responses of the hippocampus to steroid hormone signaling remain, however, poorly understood. Using ex vivo electrophysiology and wild type (WT) and miR-132/miR-212 microRNAs knockout (miRNA-132/212-/-) mice, we examined the effects of corticosterone (the rodent's equivalent to cortisol in humans) on the synaptic properties of the dorsal and ventral hippocampus. In WT mice, corticosterone predominantly inhibited metaplasticity in the dorsal WT hippocampi, whereas it significantly dysregulated both synaptic transmission and metaplasticity at dorsal and ventral regions of miR-132/212-/- hippocampi. Western blotting further revealed significantly augmented levels of endogenous CREB and a significant CREB reduction in response to corticosterone only in miR-132/212-/- hippocampi. Sirt1 levels were also endogenously enhanced in the miR-132/212-/- hippocampi but unaltered by corticosterone, whereas the levels of phospo-MSK1 were only reduced by corticosterone in WT, not in miR-132/212-/- hippocampi. In behavioral studies using the elevated plus maze, miRNA-132/212-/- mice further showed reduced anxiety-like behavior. These observations propose miRNA-132/212 as potential region-selective regulators of the effects of steroid hormones on hippocampal functions, thus likely fine-tuning hippocampus-dependent memory and emotional processing.


Asunto(s)
Corticosterona , MicroARNs , Ratones , Humanos , Animales , Corticosterona/farmacología , Corticosterona/metabolismo , Hidrocortisona/metabolismo , Hipocampo/metabolismo , MicroARNs/metabolismo , Plasticidad Neuronal
4.
Biomolecules ; 13(3)2023 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-36979402

RESUMEN

The worldwide increase in cognitive decline, both in aging and with psychiatric disorders, warrants a search for pharmacological treatment. Although dopaminergic treatment approaches represent a major step forward, current dopamine transporter (DAT) inhibitors are not sufficiently specific as they also target other transporters and receptors, thus showing unwanted side effects. Herein, we describe an enantiomerically pure, highly specific DAT inhibitor, S-CE-123, synthetized in our laboratory. Following binding studies to DAT, NET and SERT, GPCR and kinome screening, pharmacokinetics and a basic neurotoxic screen, S-CE-123 was tested for its potential to enhance and/or rescue cognitive functions in young and in aged rats in the non-invasive reward-motivated paradigm of a hole-board test for spatial learning. In addition, an open field study with young rats was carried out. We demonstrated that S-CE-123 is a low-affinity but highly selective dopamine reuptake inhibitor with good bioavailability. S-CE-123 did not induce hyperlocomotion or anxiogenic or stereotypic behaviour in young rats. Our compound improved the performance of aged but not young rats in a reward-motivated task. The well-described impairment of the dopaminergic system in aging may underlie the age-specific effect. We propose S-CE-123 as a possible candidate for developing a tentative therapeutic strategy for age-related cognitive decline and cognitive dysfunction in psychiatric disorders.


Asunto(s)
Compuestos de Bencidrilo , Dopamina , Ratas , Animales , Dopamina/metabolismo , Compuestos de Bencidrilo/farmacología , Inhibidores de Captación de Dopamina/química , Inhibidores de Captación de Dopamina/farmacología , Cognición
5.
Biomolecules ; 12(7)2022 06 24.
Artículo en Inglés | MEDLINE | ID: mdl-35883437

RESUMEN

Dopamine (DA), the most abundant human brain catecholaminergic neurotransmitter, modulates key behavioral and neurological processes in young and senescent brains, including motricity, sleep, attention, emotion, learning and memory, and social and reward-seeking behaviors. The DA transporter (DAT) regulates transsynaptic DA levels, influencing all these processes. Compounds targeting DAT (e.g., cocaine and amphetamines) were historically used to shape mood and cognition, but these substances typically lead to severe negative side effects (tolerance, abuse, addiction, and dependence). DA/DAT signaling dysfunctions are associated with neuropsychiatric and progressive brain disorders, including Parkinson's and Alzheimer diseases, drug addiction and dementia, resulting in devastating personal and familial concerns and high socioeconomic costs worldwide. The development of low-side-effect, new/selective medicaments with reduced abuse-liability and which ameliorate DA/DAT-related dysfunctions is therefore crucial in the fields of medicine and healthcare. Using the rat as experimental animal model, the present work describes the synthesis and pharmacological profile of (S)-MK-26, a new modafinil analogue with markedly improved potency and selectivity for DAT over parent drug. Ex vivo electrophysiology revealed significantly augmented hippocampal long-term synaptic potentiation upon acute, intraperitoneally delivered (S)-MK-26 treatment, whereas in vivo experiments in the hole-board test showed only lesser effects on reference memory performance in aged rats. However, in effort-related FR5/chow and PROG/chow feeding choice experiments, (S)-MK-26 treatment reversed the depression-like behavior induced by the dopamine-depleting drug tetrabenazine (TBZ) and increased the selection of high-effort alternatives. Moreover, in in vivo microdialysis experiments, (S)-MK-26 significantly increased extracellular DA levels in the prefrontal cortex and in nucleus accumbens core and shell. These studies highlight (S)-MK-26 as a potent enhancer of transsynaptic DA and promoter of synaptic plasticity, with predominant beneficial effects on effort-related behaviors, thus proposing therapeutic potentials for (S)-MK-26 in the treatment of low-effort exertion and motivational dysfunctions characteristic of depression and aging-related disorders.


Asunto(s)
Proteínas de Transporte de Dopamina a través de la Membrana Plasmática , Dopamina , Animales , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/antagonistas & inhibidores , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/metabolismo , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Humanos , Motivación/efectos de los fármacos , Plasticidad Neuronal/efectos de los fármacos , Ratas
6.
Molecules ; 27(10)2022 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-35630651

RESUMEN

The muscarinic acetylcholine receptor family is a highly sought-after target in drug and molecular imaging discovery efforts aimed at neurological disorders. Hampered by the structural similarity of the five subtypes' orthosteric binding pockets, these efforts largely failed to deliver subtype-selective ligands. Building on our recent successes with arecaidine-derived ligands targeting M1, herein we report the synthesis of a related series of 11 hydroxylated arecaidine esters. Their physicochemical property profiles, expressed in terms of their computationally calculated CNS MPO scores and HPLC-logD values, point towards blood-brain barrier permeability. By means of a competitive radioligand binding assay, the binding affinity values towards each of the individual human mAChR subtypes hM1-hM5 were determined. The most promising compound of this series 17b was shown to have a binding constant towards hM1 in the single-digit nanomolar region (5.5 nM). Similar to our previously reported arecaidine-derived esters, the entire series was shown to act as hM1R antagonists in a calcium flux assay. Overall, this study greatly expanded our understanding of this recurring scaffolds' structure-activity relationship and will guide the development towards highly selective mAChRs ligands.


Asunto(s)
Receptores Muscarínicos , Transducción de Señal , Arecolina/análogos & derivados , Unión Competitiva , Humanos , Ligandos , Receptores Muscarínicos/metabolismo
7.
Appl Environ Microbiol ; 88(6): e0251021, 2022 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-35108081

RESUMEN

Endophytic fungi have been recognized as prolific producers of chemically diverse secondary metabolites. In this work, we describe a new representative of the order Helotiales isolated from the medicinal plant Bergenia pacumbis. Several bioactive secondary metabolites were produced by this Helotiales sp. BL 73 isolate grown on rice medium, including cochlioquinones and isofusidienols. Sequencing and analysis of the approximately 59-Mb genome revealed at least 77 secondary metabolite biosynthesis gene clusters, of which several could be associated with detected compounds or linked to previously reported molecules. Four terpene synthase genes identified in the BL73 genome were codon optimized and expressed, together with farnesyl-, geranyl-, and geranylgeranyl-pyrophosphate synthases, in Streptomyces spp. An analysis of recombinant strains revealed the production of linalool and its oxidized form, terpenoids typically associated with plants, as well as a yet unidentified terpenoid. This study demonstrates the importance of a complex approach to the investigation of the biosynthetic potential of endophytic fungi using both conventional methods and genome mining. IMPORTANCE Endophytic fungi represent an as yet underexplored source of secondary metabolites, of which some may have industrial and medical applications. We isolated a slow-growing fungus belonging to the order Helotiales from the traditional medicinal plant Bergenia pacumbis and characterized its potential to biosynthesize secondary metabolites. We used cultivation of the isolate with a subsequent analysis of compounds produced, bioinformatics-based mining of the genome, and heterologous expression of several terpene synthase genes. Our study revealed that this Helotiales isolate has enormous potential to produce structurally diverse natural products, including polyketides, nonribosomally synthesized peptides, terpenoids, and ribosomally synthesized and posttranslationally modified peptides (RiPPs). Identification of meroterpenoids and xanthones, along with establishing a link between these molecules and their putative biosynthetic genes, sets the stage for investigation of the respective biosynthetic pathways. The heterologous production of terpenoids suggests that this approach can be used for the discovery of new compounds belonging to this chemical class using Streptomyces bacteria as hosts.


Asunto(s)
Ascomicetos , Streptomyces , Ascomicetos/genética , Vías Biosintéticas/genética , Familia de Multigenes , Metabolismo Secundario , Streptomyces/genética
8.
Sci Rep ; 11(1): 23962, 2021 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-34907284

RESUMEN

The lack of novel cognitive enhancer drugs in the clinic highlights the prediction problems of animal assays. The objective of the current study was to test a putative cognitive enhancer in a rodent cognitive test system with improved translational validity and clinical predictivity. Cognitive profiling was complemented with post mortem proteomic analysis. Twenty-seven male Lister Hooded rats (26 months old) having learned several cognitive tasks were subchronically treated with S-CE-123 (CE-123) in a randomized blind experiment. Rats were sacrificed after the last behavioural procedure and plasma and brains were collected. A label-free quantification approach was used to characterize proteomic changes in the synaptosomal fraction of the prefrontal cortex. CE-123 markedly enhanced motivation which resulted in superior performance in a new-to-learn operant discrimination task and in a cooperation assay of social cognition, and mildly increased impulsivity. The compound did not affect attention, spatial and motor learning. Proteomic quantification revealed 182 protein groups significantly different between treatment groups containing several proteins associated with aging and neurodegeneration. Bioinformatic analysis showed the most relevant clusters delineating synaptic vesicle recycling, synapse organisation and antioxidant activity. The cognitive profile of CE-123 mapped by the test system resembles that of modafinil in the clinic showing the translational validity of the test system. The findings of modulated synaptic systems are paralleling behavioral results and are in line with previous evidence for the role of altered synaptosomal protein groups in mechanisms of cognitive function.


Asunto(s)
Envejecimiento/metabolismo , Cognición/efectos de los fármacos , Aprendizaje/efectos de los fármacos , Modafinilo , Corteza Prefrontal/metabolismo , Animales , Compuestos de Bencidrilo/farmacología , Masculino , Modafinilo/análogos & derivados , Modafinilo/farmacología , Ratas
9.
Viruses ; 13(7)2021 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-34372513

RESUMEN

Chikungunya virus (CHIKV) is a mosquito-transmitted alphavirus that has re-emerged in recent decades, causing large-scale epidemics in many parts of the world. CHIKV infection leads to a febrile disease known as chikungunya fever (CHIKF), which is characterised by severe joint pain and myalgia. As many patients develop a painful chronic stage and neither antiviral drugs nor vaccines are available, the development of a potent CHIKV inhibiting drug is crucial for CHIKF treatment. A comprehensive summary of current antiviral research and development of small-molecule inhibitor against CHIKV is presented in this review. We highlight different approaches used for the identification of such compounds and further discuss the identification and application of promising viral and host targets.


Asunto(s)
Antivirales/farmacología , Fiebre Chikungunya/virología , Virus Chikungunya/efectos de los fármacos , Replicación Viral/efectos de los fármacos , Animales , Fiebre Chikungunya/tratamiento farmacológico , Simulación por Computador , Culicidae , Modelos Animales de Enfermedad , Desarrollo de Medicamentos , Humanos , Ratones
10.
Mol Psychiatry ; 26(12): 7076-7090, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34244620

RESUMEN

Aging-related neurological deficits negatively impact mental health, productivity, and social interactions leading to a pronounced socioeconomic burden. Since declining brain dopamine signaling during aging is associated with the onset of neurological impairments, we produced a selective dopamine transporter (DAT) inhibitor to restore endogenous dopamine levels and improve cognitive function. We describe the synthesis and pharmacological profile of (S,S)-CE-158, a highly specific DAT inhibitor, which increases dopamine levels in brain regions associated with cognition. We find both a potentiation of neurotransmission and coincident restoration of dendritic spines in the dorsal hippocampus, indicative of reinstatement of dopamine-induced synaptic plasticity in aging rodents. Treatment with (S,S)-CE-158 significantly improved behavioral flexibility in scopolamine-compromised animals and increased the number of spontaneously active prefrontal cortical neurons, both in young and aging rodents. In addition, (S,S)-CE-158 restored learning and memory recall in aging rats comparable to their young performance in a hippocampus-dependent hole board test. In sum, we present a well-tolerated, highly selective DAT inhibitor that normalizes the age-related decline in cognitive function at a synaptic level through increased dopamine signaling.


Asunto(s)
Proteínas de Transporte de Dopamina a través de la Membrana Plasmática , Plasticidad Neuronal , Envejecimiento , Animales , Encéfalo , Hipocampo , Plasticidad Neuronal/fisiología , Ratas
11.
Org Biomol Chem ; 19(11): 2425-2429, 2021 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-33666635

RESUMEN

The direct transfer of different α-substituted methyllithium reagents to chlorinated phosphorous electrophiles of diverse oxidation state (phosphates, phosphine oxides and phosphines) is proposed as an effective strategy to synthesize geminal P-containing methanes. The methodology relies on the efficient nucleophilic substitution conducted on the P-chlorine linkage. Uniformly high yields are observed regardless the specific nature of the carbanion employed: once established the conditions for generating the competent nucleophile (LiCH2Hal, LiCHHal2, LiCH2CN, LiCH2SeR etc.) the homologated compounds are obtained via a single operation. Some P-containing formal carbanions have been evaluated in transferring processes, including the carbonyl-difluoromethylation of the opioid agent Hydrocodone.

12.
ACS Omega ; 6(3): 2184-2191, 2021 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-33521458

RESUMEN

In the search for new antibiotics, several fungal endophytes were isolated from the medicinal plant Leontopodium nivale subsp. alpinum (Edelweiss). The extract from one of these fungi classified as Akanthomyces sp. displayed broad-spectrum antibiotic activity against gram-negative bacteria and fungi. Further investigation into the composition of this extract using bioactivity-guided fractionation, HRMS, and nuclear magnetic resonance revealed two new 4-hydroxy-2-pyridone alkaloids (1, 2) and emestrin (3), an epidithiodioxopiperazine not previously known to be produced by a member of Cordycipitaceae. Further testing of purified compounds 1 and 2 proved that they are devoid of antibiotic activity, and all the activities observed in the crude extract could be assigned to emestrin (3), whose configuration was confirmed by crystallographic data. This study demonstrates, for the first time, that endophytic fungi from Edelweiss can produce new compounds, prompting further investigation into them for drug discovery.

13.
Nat Prod Res ; 35(7): 1090-1096, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31303055

RESUMEN

The culture broth of endophytic Streptomyces sp. AB100, isolated from the shoots of medicinal plant Atropa belladonna (L.) was investigated for the presence of antibacterial compounds. After initial testing followed by bioactivity-guided fractionation, six new piperazic acid (PA)-containing congeners of two known peptides, JBIR-39 and JBIR-40, were identified by HR-MS/MS and NMR analyses. Only the dehydroxylated hexapeptidic derivatives with unusual incorporation of four PA moieties exhibited weak antibacterial activity against Gram-positive test organism Bacillus subtilis. A 16S rDNA-based phylogenetic tree of known Streptomyces spp. producing PA-containing hexapeptides isolated from different habitats and endophyte Streptomyces AB100 showed considerable diversity, suggesting that these metabolites may play an important environmental role beyond their antibacterial activity.


Asunto(s)
Atropa belladonna/microbiología , Endófitos/química , Péptidos/farmacología , Plantas Medicinales/química , Piridazinas/farmacología , Streptomyces/química , Streptomyces/aislamiento & purificación , Antibacterianos/farmacología , Bacillus subtilis/efectos de los fármacos , ADN Ribosómico/genética , Espectroscopía de Resonancia Magnética , Pruebas de Sensibilidad Microbiana , Filogenia , Brotes de la Planta/microbiología , Espectrometría de Masas en Tándem
14.
iScience ; 23(12): 101785, 2020 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-33294793

RESUMEN

Heterologous expression of a biosynthesis gene cluster from Amycolatopsis sp. resulted in the discovery of two unique class IV lasso peptides, felipeptins A1 and A2. A mixture of felipeptins stimulated proliferation of cancer cells, while having no such effect on the normal cells. Detailed investigation revealed, that pre-treatment of cancer cells with a mixture of felipeptins resulted in downregulation of the tumor suppressor Rb, making the cancer cells to proliferate faster. Pre-treatment with felipeptins made cancer cells considerably more sensitive to the anticancer agent doxorubicin and re-sensitized doxorubicin-resistant cells to this drug. Structural characterization and binding experiments showed an interaction between felipeptins resulting in complex formation, which explains their synergistic effect. This discovery may open an alternative avenue in cancer treatment, helping to eliminate quiescent cells that often lead to cancer relapse.

15.
Org Lett ; 22(19): 7629-7634, 2020 10 02.
Artículo en Inglés | MEDLINE | ID: mdl-32910659

RESUMEN

The sequential installation of a carbenoid and a hydride into a carbonyl, furnishing halomethyl alkyl derivatives, is reported. Despite the employment of carbenoids as nucleophiles in reactions with carbon-centered electrophiles, sp3-type alkyl halides remain elusive materials for selective one-carbon homologations. Our tactic levers on using carbonyls as starting materials and enables uniformly high yields and chemocontrol. The tactic is flexible and is not limited to carbenoids. Also, diverse carbanion-like species can act as nucleophiles, thus making it of general applicability.

16.
Mol Inform ; 39(10): e2000090, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32721082

RESUMEN

The current pandemic threat of COVID-19, caused by the novel coronavirus SARS-CoV-2, not only gives rise to a high number of deaths around the world but also has immense consequences for the worldwide health systems and global economy. Given the fact that this pandemic is still ongoing and there are currently no drugs or vaccines against this novel coronavirus available, this in silico study was conducted to identify a potential novel SARS-CoV-2-inhibitor. Two different approaches were pursued: 1) The Docking Consensus Approach (DCA) is a novel approach, which combines molecular dynamics simulations with molecular docking. 2) The Common Hits Approach (CHA) in contrast focuses on the combination of the feature information of pharmacophore modeling and the flexibility of molecular dynamics simulations. The application of both methods resulted in the identification of 10 compounds with high coronavirus inhibition potential.


Asunto(s)
Antivirales/química , Antivirales/farmacología , Descubrimiento de Drogas/métodos , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , SARS-CoV-2/efectos de los fármacos , Sitios de Unión , COVID-19/virología , Humanos , Conformación Molecular , Estructura Molecular , Unión Proteica , Relación Estructura-Actividad Cuantitativa , Proteínas Virales/antagonistas & inhibidores , Proteínas Virales/química , Tratamiento Farmacológico de COVID-19
17.
Front Aging Neurosci ; 12: 204, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32719597

RESUMEN

Lipids play a major role for several brain functions, including cognition and memory. There is a series of work on individual lipids showing involvement in memory mechanisms, a concise lipidome was not reported so far. Moreover, there is no evidence for age-related memory decline and there is only work on brain of young vs. aging animals. Aging animals, however, are not a homogeneous group with respect to memory impairments, thus animals with impaired and unimpaired memory can be discriminated. Following recent studies of hippocampal lipid profiles and hypothalamus controlled hormone profiles, the aim of this study was to compare hypothalamic, lipidomic changes in male Sprague-Dawley rats between young (YM), old impaired (OMI) and old unimpaired (OMU) males. Grouping criterions for aged rats were evaluated by testing them in a spatial memory task, the hole-board. YMs were also tested. Subsequently brains were removed, dissected and hypothalami were kept at -80°C until sample preparation and analysis on liquid chromatography / mass spectrometry (LC-MS). Significant differences in the amounts of a series of lipids from several classes could be detected between young and aged and between OMI and OMU. A large number of lipids were increased in OMI and a smaller number in OMU as compared to young rats. Differences of lipid ratios (log2 of ratio) between OMI and OMU consisted of glycerophosphocholines (aPC 36:2 and 36:3; PC 34:0, 36:1, 36:3 and 40:2); Glycerophosphoethanolamines (aPE 34:2, 38:5 and 40:5; LPE 18:1, 20:1, 20:4, 22:4 and 22:6; PE36:1 and 38:4); glycerophosphoserines (PS 36:1, 40:4, and 40:6); triacylglycerol TG 52:4; ceramide Cer 17:2 and sphingomyelin SM 20:0. Thus, hypothalamic lipid profiles across different lipid classes discriminate aged male animals into OMU and OMI. The underlying mechanisms may be related to different functional networks of lipids in memory mechanisms and differences in metabolic processes. The study underlines the importance of lipidomics in the pathophysiology of age-related cognitive decline. The necessity of evaluating the cognitive status of aged subjects by behavioral tests results in more specific detection of critical lipids in memory decline, on which now can be focused in subsequent memory studies in animals and humans.

18.
ACS Med Chem Lett ; 11(5): 906-912, 2020 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-32435404

RESUMEN

The chikungunya virus (CHIKV) is a mosquito-transmitted alphavirus, and it is the causative agent of chikungunya fever (CHIKF). Although it has re-emerged as an epidemic threat, so far there are neither vaccines nor pharmacotherapy available to prevent or treat an infection. Herein, we describe the synthesis and structure-activity relationship studies of a class of novel small molecule inhibitors against CHIKV and the discovery of a new potent inhibitor (compound 6a). The starting point of the optimization process was N-ethyl-6-methyl-2-(4-(4-fluorophenylsulfonyl)piperazine-1-yl)pyrimidine-4-amine (1) with an EC50 of 8.68 µM, a CC50 of 122 µM, and therefore a resulting selectivity index (SI) of 14.2. The optimized compound 6a, however, displays a much lower micromolar antiviral activity (EC50 value of 3.95 µM), considerably better cytotoxic liability (CC50 value of 260 µM) and consequently an improved SI of greater than 61. Therefore, we report the identification of a promising novel compound class that has the potential for further development of antiviral drugs against the CHIKV.

19.
Planta Med ; 86(15): 1080-1088, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32316044

RESUMEN

The balm of the Norway spruce (Picea abies) is a well-known traditional herbal medicine used to cure wounds. Even though clinical trials have confirmed its empirical use, the active constituents, their mode of action, and the exact composition of this natural product are still unknown. In this study, the balm was subjected to fractionated extraction and further purified employing flash chromatography, HPLC-PDA-ELSD, preparative and analytical TLC. Hydroxycinnamic acids ( 1: - 3: ), the lignan pinoresinol ( 4: ), four hydroxylated derivatives of dehydroabietic acid (DHAA) ( 5:  -  8: ), and dehydroabietic acid ( 9: ) were isolated. Their structures were elucidated by LC-MS, 1D- and 2D-NMR. Four extracts, two commercially available resin acids-pimaric acid ( 10: ) and isopimaric acid ( 11: )-and the isolated compounds were tested for increased re-epithelialization of cell-free areas in a human adult low calcium high temperature keratinocytes monolayer. Lysophosphatidic acid (10 µM) served as positive control and ranged between 100% and 150% rise in cell-covered area related to the vehicle control. Two extracts containing carboxylic acids and non-acidic apolar constituents, respectively, boosted wound closure by 47% and 36% at 10 and 3 µg/mL, respectively. Pinoresinol, DHAA, three of its hydroxylated derivatives, and pimaric and isopimaric acid as well as defined combinations of the hydroxylated DHAA derivatives led to a significantly enhanced wound closure by up to 90% at concentrations between 1 and 10 µM. Overall, lignans and diterpene resin acids, main constituents of Norway spruce balm, are able to increase migration or proliferation of keratinocytes in vitro. The presented data link the phytochemistry of this natural wound healing agent with boosted re-epithelialization.


Asunto(s)
Picea , Cromatografía Líquida de Alta Presión , Noruega , Fitoquímicos/farmacología , Repitelización
20.
Arch Pharm (Weinheim) ; 353(3): e1900269, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31917466

RESUMEN

P-glycoprotein (P-gp) is an ATP-dependent efflux pump that has a marked impact on the absorption, distribution, and excretion of therapeutic drugs. As P-gp inhibition can result in drug-drug interactions and altered drug bioavailability, identifying molecular properties that are linked to inhibition is of great interest in drug development. In this study, we combined chemical synthesis, in vitro testing, quantitative structure-activity relationship analysis, and docking studies to investigate the role of hydrogen bond (H-bond) donor/acceptor properties in transporter-ligand interaction. In a previous work, it has been shown that propafenone analogs with a 4-hydroxy-4-piperidine moiety exhibit a generally 10-fold higher P-gp inhibitory activity than expected based on their lipophilicity. Here, we specifically expanded the data set by introducing substituents at position 4 of the 4-phenylpiperidine moiety to assess the importance of H-bond donor/acceptor features in this region. The results suggest that indeed an H-bond acceptor, such as hydroxy and methoxy, increases the affinity by forming a H-bond with Tyr310.


Asunto(s)
Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/antagonistas & inhibidores , Propafenona/farmacología , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/metabolismo , Células Cultivadas , Humanos , Enlace de Hidrógeno , Simulación del Acoplamiento Molecular , Estructura Molecular , Propafenona/síntesis química , Propafenona/química , Relación Estructura-Actividad Cuantitativa , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA