Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Sci Total Environ ; 928: 172360, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38614349

RESUMEN

The study presents a comprehensive examination of changes in soil microbial functional diversity (hereafter called microbial activity) following the implementation of Nature-Based Solutions (NBS) in urban areas. Utilizing the Biolog® EcoPlates™ technique, the study explored variations in microbial diversity in urban soil under NBSs implementation across timespan of two years. Significant differences in microbial activity were observed between control location and those with NBS implementations, with seasonal variations playing a crucial role. NBS positively impacted soil microbial activity especially at two locations: infiltration basin and wild flower meadow showing the most substantial increase after NBS implementation. The study links rainfall levels to microbial functional diversity, highlighting the influence of climatic conditions on soil microbiome. The research investigates also the utilization of different carbon sources by soil microorganisms, shedding light on the specificity of substrate utilization across seasons and locations. The results demonstrate that NBSs implementations lead to changes in substrate utilization patterns, emphasizing the positive influence of NBS on soil microbial communities. Likewise, biodiversity indices, such as Shannon-Weaver diversity (H'), Shannon Evenness Index (E), and substrate richness index (S), exhibit significant variations in response to NBS. Notably, NBS implementation positively impacted H' and E indexes, especially in infiltration basin and wild flower meadow, underlining the benefits of NBS for enhancing microbial diversity. The obtained results demonstrated valuable insight into the dynamic interactions between NBS implementation and soil microbial activity. The findings underscore the potential of NBS to positively influence soil microbial diversity in urban environments, contributing to urban sustainability and soil health. The study emphasizes the importance of monitoring soil microbial activity to assess the effectiveness of NBS interventions and guides sustainable urban development practices.


Asunto(s)
Microbiota , Microbiología del Suelo , Suelo , Suelo/química , Monitoreo del Ambiente/métodos , Ciudades , Biodiversidad
2.
Sci Total Environ ; 912: 168856, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38042192

RESUMEN

The study assessed the occurrence of legally-monitored heavy metals and unmonitored antimicrobials in sludge from small, medium, large and very large municipal wastewater treatment plants (WWTPs), and the predicted environmental risk and risk of resistance selection associated with sludge administration to soil. The temporal variations of the studied compounds in sludge and associated risks to soil were determined by sampling over a year. Although the highest concentrations of heavy metals were noted in sludge from the largest WWTP, i.e. from 1.50 mg/kg (mean 1.61 mg/kg) for Cd to 2188 mg/kg (mean 1332 mg/kg) for Zn, the obtained values only reached a few percent of the legal limits. The same WWTP also demonstrated lower concentrations of antimicrobials compared to the smaller ones. The highest concentrations of antimicrobials, ranging from 24.04 µg/kg for trimethoprim to 900.24 µg/kg for tetracycline, were found in the small and medium WWTPs. However, due to lack of regulations at the national and EU levels, the results cannot be compared with legal limits. Principal Component Analysis (PCA), cluster and heatmap analysis separated samples according to WWTP size. Small WWTP demonstrated correlation with antimicrobials (tetracycline, trimethoprim, clindamycin, ciprofloxacin and ofloxacin), while the large and very large WWTP revealed correlations with heavy metals (Cu and Cr). The obtained environmental risk quotients confirmed that the heavy metals did not present a threat, measured either as individual risk quotients (RQenv), cumulative risk (RQcumulative) or risk of mixture of heavy metals (RQmix-metals). In the case of antimicrobials, only tetracycline demonstrated moderate RQenv, RQcumulative and RQmix-antimicrobials in the small WWTP sludge, with values of 0.1 to 1. Our findings highlight the importance of monitoring sewage sludge before soil application, especially from small WWTPs, to reduce the potential environmental impact of antimicrobials. They also confirm our previous data regarding the environmental risk associated with various toxic compounds, including emerging contaminants, in the sludge from small WWTPs.


Asunto(s)
Antiinfecciosos , Metales Pesados , Contaminantes del Suelo , Aguas del Alcantarillado/análisis , Suelo , Monitoreo del Ambiente/métodos , Metales Pesados/análisis , Antiinfecciosos/análisis , Antibacterianos/análisis , Miedo , Trimetoprim/análisis , Tetraciclinas/análisis , Contaminantes del Suelo/análisis
3.
Int J Mol Sci ; 24(19)2023 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-37834007

RESUMEN

Recycling of solid biowaste and manure would reduce the dependence of agriculture on synthetic products. Most of the available studies on the effects of exogenous organic matter (EOM) application to soil were focused on nutrients and crop yield, with much less attention to microbiological processes in soil, especially using modern molecular methods. The aim of this study was to evaluate the effects of various types of manure, sewage sludge and bottom sediment on the biochemical activity and biodiversity of soil and plant yield in a pot experiment. The soil was treated with a range of EOM types: six types of manure (cattle, pig, goat, poultry, rabbit and horse manure; two bottom sediments (from urban and rural systems); and two types of municipal sewage sludge. All EOMs stimulated dehydrogenases activity at a rate of 20 t ha-1. Alkaline phosphatase was mostly stimulated by poultry manure and one of the sludges. In general, the two-fold greater rate of EOMs did not further accelerate the soil enzymes. The functional diversity of the soil microbiome was stimulated the most by cattle and goat manure. EOMs produce a shift in distribution of the most abundant bacterial phyla and additionally introduce exogenous bacterial genera to soil. Poultry and horse manure introduced the greatest number of new genera that were able to survive the strong competition in soil. EOMs differentiated plant growth in our study, which was correlated to the rate of nitrate release to soil. The detailed impacts of particular amendments were EOM-specific, but in general, no harm for microbial parameters was observed for manure and sludge application, regardless of their type. There was also no proof that the PAH and pesticide contents measured in manure or sludge had any effect on microbial activity and diversity.


Asunto(s)
Microbiota , Suelo , Animales , Bovinos , Porcinos , Caballos , Conejos , Suelo/química , Aguas del Alcantarillado/química , Estiércol , Cabras
4.
Sci Total Environ ; 867: 161312, 2023 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-36603641

RESUMEN

MCPA (2-methyl-4-chlorophenoxyacetic acid) contamination is an emerging problem, especially in water reservoirs. The early removal of MCPA residues from soil can prevent its spread to untreated areas. It has been found that the growth of cucurbits and the addition of selected plant secondary metabolites (PSMs) can stimulate MCPA removal from soil. However, the effect of these treatments on soil microbial activity remains poorly studied. Hence, the aim of this research was to evaluate the influence of zucchini (C. pepo cv Atena Polka) and its characteristic PSM: syringic acid (SA) on the functional diversity of soil microorganisms in MCPA-contaminated soil using Biolog® EcoPlates™. It also examines soil physicochemical properties and the growth parameters of zucchini. Microbial activity was enhanced by both zucchini cultivation and SA. All unplanted variants showed significantly lower microbial activity (average well color development, AWCD, ranging from 0.35 to 0.51) than the planted ones (AWCD ranging from 0.77 to 1.16). SA also stimulated microbial activity in the soil: a positive effect was observed from the beginning of the experiment in the unplanted variants, but over a longer time span in the planted variants. SA ameliorated the toxic effect of MCPA on the studied plants, especially in terms of photosynthetic pigment production: the MCPA+SA group demonstrated significantly increased chlorophyll content (401 ± 4.83 µg/g), compared to the MCPA group without SA (338 ± 50.1 µg/g). Our findings demonstrated that zucchini and the amendment of soils with SA, the characteristic PSM of cucurbits, can shape functional diversity in MCPA-contaminated soil. The changes of soil properties caused by the application of both compounds can trigger changes in functional diversity. Hence, both SA and MCPA exert indirect and direct effects on soil microbial activity.


Asunto(s)
Ácido 2-Metil-4-clorofenoxiacético , Herbicidas , Contaminantes del Suelo , Ácido 2-Metil-4-clorofenoxiacético/química , Herbicidas/química , Contaminantes del Suelo/análisis , Bacterias/metabolismo , Suelo , Verduras/metabolismo , Microbiología del Suelo
5.
Sci Total Environ ; 851(Pt 1): 158102, 2022 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-35987249

RESUMEN

Despite extensive use of primary aromatic amines (AAs) in consumer products, little is known about their occurrence in the environment. In this study, we investigated the occurrence of 14 AAs and nicotine in 75 sediment samples collected from seven estuarine and freshwater ecosystems in the Unites States. Additionally, risk quotients (RQs) were calculated to assess potential risks of these chemicals to aquatic organisms. Of the 14 AAs analyzed, seven of them were found in sediments. The sum concentrations of seven AAs in sediments were in the range of 10.2 to 1810 ng/g, dry wt (mean: 388 ng/g). Aniline was the most abundant compound, accounting for, on average, 53 % of the total concentrations. Nicotine was found in sediments at a concentration range of

Asunto(s)
Sedimentos Geológicos , Contaminantes Químicos del Agua , Aminas , Compuestos de Anilina , Ecosistema , Monitoreo del Ambiente/métodos , Sedimentos Geológicos/química , Nicotina , Ríos/química , Estados Unidos , Aguas Residuales , Contaminantes Químicos del Agua/análisis
6.
Front Plant Sci ; 13: 882228, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35712561

RESUMEN

The integration of phytoremediation and biostimulation can improve pollutant removal from the environment. Plant secondary metabolites (PSMs), which are structurally related to xenobiotics, can stimulate the presence of microbial community members, exhibiting specialized functions toward detoxifying, and thus mitigating soil toxicity. In this study, we evaluated the effects of enrichment of 4-chloro-2-methylphenoxyacetic acid (MCPA) contaminated soil (unplanted and zucchini-planted) with syringic acid (SA) on the bacterial community structure in soil, the rhizosphere, and zucchini endosphere. Additionally, we measured the concentration of MCPA in soil and fresh biomass of zucchini. The diversity of bacterial communities differed significantly between the studied compartments (i.e., unplanted soil, rhizospheric soil, and plant endosphere: roots or leaves) and between used treatments (MCPA or/and SA application). The highest diversity indices were observed for unplanted soil and rhizosphere. Although the lowest diversity was observed among leaf endophytes, this community was significantly affected by MCPA or SA: the compounds applied separately favored the growth of Actinobacteria (especially Pseudarthrobacter), while their simultaneous addition promoted the growth of Firmicutes (especially Psychrobacillus). The application of MCPA + SA together lead also to enhanced growth of Pseudomonas, Burkholderia, Sphingomonas, and Pandoraea in the rhizosphere, while SA increased the occurrence of Pseudomonas in leaves. In addition, SA appeared to have a positive influence on the degradative potential of the bacterial communities against MCPA: its addition, followed by zucchini planting, significantly increased the removal of the herbicide (50%) from the soil without affecting, neither positively nor negatively, the plant growth.

7.
Sci Total Environ ; 836: 155561, 2022 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-35513141

RESUMEN

The potential use of growth substrates prepared with an admixture of 10% to 75% Hudson River sediments was evaluated by analysis of changes in microbial activity (measured using Biolog Ecoplates) and molecular markers (presence of degradative tceA1 and bphA genes) as well as potential risks toward humans and the environment (health and environmental risk quotients). The highest microbial activity was found in growth substrate with 25% Hudson River sediments compared to unamended control soil. Significant differences were observed between samples amended with lower (0-10%) and higher (25-75%) proportion of sediment. Microbial activity increased with the proportion of sediment amendment (≥25% sediment); however, this increase in microbial activity was not affected by increasing pollutant concentrations (PCBs, Pb, Cr Ni and Zn) nor decreasing TOC content. The growth substrate amended with Hudson River sediments demonstrated a potential for PCB degradation, as evidenced by the presence of tceA1 and bphA genes responsible, respectively, for reductive dehalogenation and oxidation of a range of aromatic organic compounds including PCBs. An assessment of risk quotients showed that the growth substrates containing lower doses of Hudson River sediments (10-50%) meet the international requirements for use in agriculture/horticulture for the production of non-food crops. Nevertheless, due to the elevated content of some toxic metals and PCBs, the growth substrate prepared with the highest proportion of sediments (75%) was not suitable for agricultural/horticultural use.


Asunto(s)
Bifenilos Policlorados , Contaminantes Químicos del Agua , Monitoreo del Ambiente , Sedimentos Geológicos/química , Humanos , Bifenilos Policlorados/análisis , Medición de Riesgo , Ríos , Suelo , Contaminantes Químicos del Agua/análisis
8.
Int J Phytoremediation ; 24(2): 205-214, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34126809

RESUMEN

The aim of this study was to determine the influence of syringic acid (SA), a plant secondary metabolite (PSM), on the properties of soil contaminated with 2-methyl-4-chlorophenoxyacetic acid (MCPA) and the condition of two cucurbit species zucchini (C. pepo L. 'Atena Polka') and cucumber (C. sativus 'Cezar') grown on that soil. It was found that amendment with MCPA and MCPA + SA modified the soil physico-chemical properties. Content of N and K was significantly higher for variants amended with SA and/or MCPA, while P content was lower in variant amended with SA. The cucurbits demonstrated varied efficiencies in mitigating the phytotoxicity of the MCPA-treated soil. For soil amended with MCPA + SA, samples remediated with cucumber were characterized as slightly toxic or toxic (45.2%-81.5%), while those planted with zucchini were nontoxic or slightly toxic (-40.6%-47.8%). Development of cucumber seedlings was fully inhibited by MCPA, regardless of SA application, zucchini demonstrated enhanced growth in soil treated with MCPA + SA and no statistically significant differences between morphological parameters of MCPA + SA-treated zucchini in comparison to control plants were observed. The obtained findings suggest that the application of SA is a promising way to mitigate the toxic influence of MCPA in the soil, depending on the cultivated plant species. Novelty statement: The study meets the criteria of novelty and innovativeness. Most importantly, the study is focused on: phytotoxicity studies to inform about the limitations of phytotechnology based on PSMs. Additionally, this manuscript provides an interdisciplinary description of the effects of MCPA and naturally occurring PSM- SA on cucurbits and soil parameters. Such studies, which combine the interactions between cucurbits, their secondary metabolite (SA) and their role in mitigation of phytotoxicity in MCPA-contaminated soil, has not been performed before.


Asunto(s)
Ácido 2-Metil-4-clorofenoxiacético , Herbicidas , Contaminantes del Suelo , Biodegradación Ambiental , Ácido Gálico/análogos & derivados , Suelo , Contaminantes del Suelo/análisis , Contaminantes del Suelo/toxicidad
9.
Int J Ecohydrol Hydrobiol ; 22(2): 283-294, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38620864

RESUMEN

The Indus-Ganga-Brahmaputra River Basin (IGBRB) is a trans-boundary river basin flowing through four major countries in South Asia viz., India, Pakistan, Bangladesh, and Nepal. Contamination of surface water by untreated or inadequately treated wastewater has been a huge problem for pathogenic microorganisms in economies in transition. Recent studies have reported that sewage surveillance can provide prior information of the outbreak data, because faeces can contain the novel coronavirus (SARS-CoV-2) shed by infected humans. Hence, in this study we geo-spatially mapped the COVID-19 hotspots during the peak time in the first and second wave of pandemic to demonstrate the need and usefulness of wastewater surveillance strategy in IGBRB during ongoing pandemic. Further we discussed the status of sanitation, health and hand-hygiene in the IGBRB along with characterization of the challenges posed by the pandemic in achieving the United Nations Sustainable Development Goals (UN-SDGs). Monthly Geographical Information System (GIS) mapping of COVID-19 hotspots in the IGBRB showed an increase in the spread along the direct sewage discharge points. The social inequalities expose the vulnerabilities of the urban poor in terms of the burden, risks and access to Water, Sanitation, and Hygiene (WASH) needs. Such an evidence-based image of the actual SARS-CoV-2 viral load in the community along the IGBRB can provide valuable insights and recommendations to deal with the future waves of COVID-19 pandemic in this region that can go a long way in achieving the UN-SDGs.

10.
Polymers (Basel) ; 13(2)2021 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-33477813

RESUMEN

The paper presents the current volume of international production and global markets of carbon fiber reinforced polymer composites, also regarding the potential development trends. Examples were provided on how to effectively recycle carbon fiber reinforced polymer composites. Legally binding legislation in the EU on polymer composite recycling was given.

11.
Ecotoxicology ; 30(1): 57-66, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33280055

RESUMEN

The information about concentrations of dioxin in pore water, ecotoxicity and DOC and TOC content can be key factor for the prediction of the fate of dioxins in the aquatic environment as well as an ecological risk assessment. The aims of the study were to assess the concentration of PCDDs/PCDFs and ecotoxicity of pore water and to compare above results in relation to the dissolved organic carbon (DOC) and total organic carbon (TOC) content. The concentration of dioxins was assessed using an enzyme-linked immunoassay test, while the ecotoxicity of pore water was determined using a crustacean Daphnia magna and bacteria Aliivibrio fischeri. The studies were conducted on two different dammed reservoirs Roznów (catchment basin of an agricultural character) and Rybnik (catchment basin of an industrial character) located in southern Poland. The concentration of dioxins in pore water was between 8.56 to 90.92 ng EQ/L, with a significantly higher concentration in the pore water from the Roznów Reservoir than the Rybnik Reservoir. The DOC content in pore water was from 30.29 to 63.02 mg/L (Roznów Reservoir) and from 35.46 to 60.53 mg/L (Rybnik Reservoir). Higher toxic responses were recorded for A. fischeri than for D. magna. Moreover a significantly higher toxicity for both tested organisms was indicated in pore water from the Roznów Reservoir. Besides of TOC and DOC, the fine fractions of the sediments were particularly important in the concentration of dioxin in pore water. The other pore water parameters, such as pH and EC can influence the toxicity of water for organisms. The result indicate complex relationships between the PCDD/F, ecotoxicity and DOC, TOC concentration in pore water and confirms that these parameters are important in terms of water environmental contamination.


Asunto(s)
Dioxinas , Contaminantes Químicos del Agua , Animales , Carbono/análisis , Dioxinas/toxicidad , Polonia , Dibenzodioxinas Policloradas , Agua , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/toxicidad
12.
Polymers (Basel) ; 12(12)2020 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-33339281

RESUMEN

The paper presents some examples of new technological solutions for the recovery and re-use of recycled carbon fiber in automotive and railway industries, as well as in aviation and wind turbine constructions. The new technologies of fiber recovery that are described can enable the mass-scale use of recycled carbon fiber in the future.

13.
Chemosphere ; 260: 127605, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32688319

RESUMEN

Polychlorinated dibenzo-p-dioxins, dibenzofurans (PCDD/F) and their precursors - pentachlorophenol (PCP) and triclosan (TCS), constitute a group of persistent, highly toxic multimedia pollutants, being easily transported via atmosphere over long distances, thus particularly threatening to the polar areas. The global fate of PCDD/Fs is temperature-dependent, and their transfer and immobilization at the Poles are described by the grasshopper effect and the cold trap phenomenon. The aim of this interdisciplinary study was to perform a preliminary assessment of the present state of pollution of Arctic and Antarctic marine sediments by PCP and TCS along with determination of PCDD/Fs contamination by immunoassay. Sediments from 20 stations were collected during two polar expeditions (2013-2016). The study area covered Hornsund Fjord and the southwest coast of Wedel-Jarlsberg Land (Arctic) - Skodde Bay, Nottingham Bay, Isbjørnhamna Bay and Admiralty Bay (Antarctica) - Suszczewski Cove, Halfmoon Cove and Herve Cove. The studied contaminants were quantified in 60% of the collected sediments, with almost half exceeding the environmentally safe levels according European regulations and worldwide literature. The determined levels of PCP, TCS and PCDD/F in Arctic and Antarctic sediments were to be comparable to those reported in the southern Baltic Sea located in the intense industrialized mid-latitudes. Maximum concentrations were observed in the vicinity of retreating, marine terminating glaciers. This observation confirms reemission of POPs into the global cycle with respect to the worldwide ocean warming. The results of this study should gain attention of the international and regional environmental agencies as well as the main chlorine production decision makers.


Asunto(s)
Dibenzofuranos/análisis , Monitoreo del Ambiente , Contaminantes Ambientales/análisis , Dibenzodioxinas Policloradas/análisis , Regiones Antárticas , Benzofuranos/análisis , Cambio Climático , Dibenzofuranos Policlorados , Dioxinas , Contaminación Ambiental , Sedimentos Geológicos/química , Pentaclorofenol
14.
Sci Total Environ ; 738: 139841, 2020 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-32526423

RESUMEN

The need to dispose of dredged sediments and development of appropriate technology for their safe utilization has become a growing problem in recent years. It has been proposed that dredged, fresh sediments can be utilized in agriculture or environment; however there is also growing interest in the use of thermally-treated sediments. Hence, the aim of this study was threefold: 1) to evaluate the effect of two incineration temperatures (300 °C and 600 °C) on the chemical and ecotoxicological properties of sediment; 2) select the appropriate treatment for further phytoremediation experiments with zucchini; and 3) assess the impact of sediment admixture on the physico-chemical parameters of soil, based on the responses of Aliivibrio fischeri and growth of zucchini (Cucurbita pepo L. cv 'Black Beauty'). A range of chemical (inductively-coupled plasma optical emission spectrophotometry for macro- and trace elements; gas chromatography for polychlorinated biphenyls (PCBs)), ecotoxicological (Microtox assay), and plant morphology (biomass measurement) as well as physiological analyses (spectrophotometry for chlorophyll) were applied. River sediments incinerated at 600 °C resulted in better chemical and ecotoxicological properties than incinerated at 300 °C or no incinerated. Incineration at 600 °C removed PCBs from sediment. In culture experiments conducted with zucchini, sediment treated at 300 °C demonstrated a 51-81% reduction in PCB concentrations compared to untreated sediment. After four weeks of growth, the raw sediment showed a significant increase in K, Fe, Cr, Pb, Zn concentrations, whereas the thermally-processed sediment showed a decrease in Ca, Na, P, Cd, Cu, Ni, and Zn concentrations. Both the fresh and thermally-treated sediment types influenced plant growth positively: they demonstrated higher biomass production than plants grown in control soil; however, plants grown on soil with thermally-processed sediment demonstrated lower biomass than those grown in raw sediment. Chlorophyll content was affected negatively by admixtures of soil with treated or untreated sediment, while a lower chlorophyll a/b ratio was observed in plants grown on an admixture of thermally-treated sediment with soil. Our findings suggest that the use of sediments as a growth medium component may be a promising way for their utilization and transformation from waste material to a valuable resource enhancing the benefits to the environment.


Asunto(s)
Metales Pesados/análisis , Bifenilos Policlorados/análisis , Contaminantes del Suelo/análisis , Biodegradación Ambiental , Clorofila A , Sedimentos Geológicos , Ríos , Suelo
15.
Int J Phytoremediation ; 22(12): 1224-1232, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32406763

RESUMEN

Approximately 200 million m3 of sediments are dredged every year in the United States. Of this amount, 2.3-9 million m3 are contaminated to the extent that they require special, and often costly, handling. Therefore, there is a pressing need to develop appropriate technology for the safe utilization of these sediments, especially in the case of the Hudson River, which is well known to demonstrate significant polychlorinated biphenyls (PCBs) contamination. Hence, the aim of the present study was to examine the influence of different doses of Hudson River sediments (10%, 25%, 50%, 75% and 100% admixtures) on soil quality and on the biochemical and growth response of cucumber (Cucumis sativus L. cv 'Wisconsin SMR 58'), used as potential phytoremediation tool for sediment-borne PCBs. A sediment/soil admixture was found to significantly decrease the nitrogen (N) content in the substratum; in addition, phosphorus (P) content was significantly increased by 50-100% sediment, while potassium (K) content was significantly increased by 10% sediment, and significantly decreased by >50% sediment. Although sediment treatment resulted in a gradual increase in PCB content in the soil-sediment substratum, exceeding the threshold effect concentration (TEC) for the ≥50% sediment admixture, the Microtox assay did not suggest toxicity to microorganisms. The results demonstrated also that admixture of 10-25% Hudson River sediment increased cucumber growth; however, higher doses led to growth inhibition, manifested as lower biomass and smaller leaves. Also, chlorophyll a and b content decreased with increasing doses of sediment. Phenylpropanoid and flavonol contents were significantly higher in plants grown in soil amended with 10% of sediment, but significantly lower in soil treated with a 100% sediment admixture. The anthocyanin content in plants was lower at admixtures of 50% and higher. The obtained results corresponded with the decreasing content of N and K.


Asunto(s)
Cucumis sativus , Bifenilos Policlorados , Biodegradación Ambiental , Clorofila A , Sedimentos Geológicos , Ríos , Suelo , Wisconsin
16.
Environ Sci Pollut Res Int ; 27(7): 7388-7397, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31884549

RESUMEN

The aim of this study was to assess the potential for application of Hudson River sediment as a plant growth medium by mixing with various proportions of soil. The growth medium obtained by the admixture of soil and Hudson River sediment was characterized by optimal pH, reduced salinity, and presence of macro- (K, Mg) and micronutrients (Fe, Mn). Apart from beneficial nutrients and organic matter, the riverine sediment also contained toxic metals (Zn 86 mg; Cu 17.8 mg; Ni 16.6 mg; Cr 20.7 mg; Cd 0.46 mg; Pb 20.7 mg/kg, at concentrations below the threshold effect concentration) and PCBs (total concentration 254 ng/g), which can have a negative impact on soil ecosystems. The results ecological risk assessment of six trace elements and PCBs in sediment suggested medium/moderate risk (PECq = 0.21) and the need for ecotoxicological tests prior to its use as a growth medium. However, ecotoxicity tests of the soil/sediment admixture indicated that it was non-toxic or less-toxic to crustacean Heterocypris incongruens (PE = - 8-38%) and bacteria Aliivibrio fischeri (PE = - 20-38). For Sinapis alba L. and Lepidium sativum L., the germination index (GI) indicated the dominance of inhibitory effect on plant growth; whereas for the Sorghum saccharatum L., the GI value showed the stimulatory effect. Based on the above physicochemical and ecotoxicological analyses, the sediment was found suitable for use as a growth medium, for non-edible plants. It is worth to underline that this sediment was collected from relatively less contaminated location of the river and therefore the results may not represent sediments from entire stretch of the Hudson River.


Asunto(s)
Metales Pesados , Contaminantes Químicos del Agua , Animales , Ecosistema , Monitoreo del Ambiente , Metales Pesados/toxicidad , New York , Ríos , Suelo
17.
Bull Environ Contam Toxicol ; 104(2): 200-205, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31781814

RESUMEN

Phenoxy acid 2,4-D (2,4-dichlorophenoxy acid) is one of the most commonly-used herbicide in agriculture. Biodegradation of 2,4-D can be stimulated by structurally-related plant secondary metabolites such as ferulic acid (FA). The aim of this study is to: (1) assess the potential of indigenous soil bacteria to degrade 2,4-D in the presence of FA by PCR analysis of functional tfdA genes, (2) to determine the influence of 2,4-D and FA on samples ecotoxicity using Phytotoxkit® and Microtox® biotests. The detection of tfdA genes varied depending on the enrichment of samples with FA. FA suppressed detection of the tfdA genes, 100 µM 2,4-D induced higher detection of studied amplicons, while 500 µM 2,4-D delayed their detection. The ecotoxicity response was specific and differed between plants (PE% Lepidium sativum > Sinapis alba > Sorghum saccharatum) and bacteria (PE% up to 99% for Vibrio fischeri). Our findings confirm that 2,4-D and FA had a toxic influence on the used organisms.


Asunto(s)
Ácido 2,4-Diclorofenoxiacético/análisis , Biodegradación Ambiental , Ácidos Cumáricos/análisis , Herbicidas/análisis , Contaminantes del Suelo/análisis , Ácido 2,4-Diclorofenoxiacético/metabolismo , Aliivibrio fischeri/metabolismo , Ácidos Cumáricos/metabolismo , ADN Ribosómico/química , Genes Bacterianos , Herbicidas/metabolismo , Lepidium sativum/metabolismo , Extractos Vegetales , Sinapis/metabolismo , Suelo , Microbiología del Suelo , Contaminantes del Suelo/metabolismo , Sorghum/metabolismo
18.
Environ Sci Pollut Res Int ; 27(9): 8872-8884, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31686332

RESUMEN

The aim of the study was to evaluate the influence of the application of increasing proportions (0%, 10%, 25%, 50%, 75%, and 100%) of an admixture of PCB-contaminated Hudson River sediment collected from the Upper Hudson River, near Waterford, Saratoga county (New York, USA) on soil properties, phytotoxicity, and biometric and physiological responses of cucumber (Cucumis sativus L. cv 'Wisconsin SMR 58') and zucchini (Cucurbita pepo L. cv 'Black Beauty') grown as potential phyto- and rhizoremediators. The experiment was performed for 4 weeks in a growth chamber under controlled conditions. Amendment of Hudson River sediment to soil led to a gradual increase in PCB content of the substratum from 13.7 µg/kg (with 10% sediment) to 255 µg/kg (with 100% sediment). Sediment amendment showed no phytotoxic effects during the initial stages, even Lepidium sativum root growth was stimulated; however, this positive response diminished following a 4-week growth period, with the greatest inhibition observed in unplanted soil and zucchini-planted soil. The stimulatory effect remained high for cucumber treatments. The sediment admixture also increased cucurbit fresh biomass as compared to control samples, especially at lower doses of sediment admixture, even though PCB content of the soil amended with sediment increased. Cucurbits' leaf surface area, in turn, demonstrated an increase for zucchini, however only for 50% and 75% sediment admixture, while cucumber showed no changes when lower doses were applied and decrease for 75% and 100% sediment admixture. Chlorophyll a + b decreased significantly in sediment-amended soils, with greater inhibition observed for cucumber than zucchini. Our results suggest that admixture of riverine sediment from relatively less-contaminated locations may be used as soil amendments under controlled conditions; however, further detailed investigation on the fate of pollutants is required, especially in terms of the bioaccumulation and biomagnification properties of PCBs, before contaminated sediment can be applied in an open environment.


Asunto(s)
Bifenilos Policlorados/análisis , Contaminantes del Suelo/análisis , Biodegradación Ambiental , Clorofila A , New York , Suelo , Wisconsin
19.
PeerJ ; 7: e6743, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31106050

RESUMEN

BACKGROUND: The increasing production of sewage sludge (SS) engenders the problem of its responsible utilization and disposal. Likewise, urban sediments (SED) are deposited at the bottom of urban reservoirs and sedimentation ponds, and these require periodical dredging and utilization. However, while the SS and SED deposits often contain nutrients such as nitrogen and phosphorus; however, they also contain a variety of hazardous compounds including heavy metals, Persistent Organic Pollutants (POPs) and microbial pollutants. Fortunately, some species of Cucurbitaceae can accumulate high levels of POPs, such as polychlorinated dibenzo-p-dioxins (PCDD), polychlorinated dibenzofurans (PCDF) and polychlorinated biphenyls (PCB), in their tissues. METHODS: SS was collected from the Lodz Municipal Wastewater Treatment Plant and SED from the Sokolówka Sequential Biofiltration System. The SS and SED samples were added to soil in flower pots at three concentrations (1.8 g, 5.4 g and 10.8 g per flower pot), and one pot was left as an unamended control (C). Soil PCB concentrations were determined before cucumber planting, and after five weeks of growth. Also, total soluble protein, total chlorophyll content, chlorophyll a/b ratio and degree of lipid peroxidation (TBARS) were examined in the leaves of the cucumber plants (Cucumis sativus L.) cv. Cezar after five weeks. Antioxidative response was assessed by ascorbate peroxidase (APx) and catalase (CAT) assay. RESULTS: The initial PCB concentration in soil after application of SS or SED was dependent on the applied dose. After five weeks, PCB concentration fell significantly for all samples and confirmed that the dose of SS/SED had a strong effect. Soil remediation was found to be more effective after SS application. Total soluble protein content in the cucumber leaf tissues was dependent on both the type and the dose of the applied amendments, and increased with greater SS doses in the soil. The total chlorophyll content remained unchanged, and the chlorophyll a/b ratio was slightly elevated only after the application of the highest SS and SED dose. The use of SS and SED did not significantly affect TBARS content. APx activity fell after SS or SED application; however, CAT activity tended to increase, but only in the leaves of plants grown in SS-amended soil. DISCUSSION: The cultivation of cucumber plants reduces PCB concentration in soil amended with SS or SED; however, this effect is more evident in the case of SS. SS application also induced more intensive changes in the activity of enzymes engaged in antioxidative response and oxidative stress markers in plant tissues than SED. The levels of PCB in the SS may have triggered a more severe imbalance between pro- and antioxidative reactions in plants. Cucumber plants appear to be resistant to the presence of toxic substances in SS and SED, and the addition of SS and SED not only acts as a fertilizer, but also protects against accelerated aging.

20.
PeerJ ; 7: e6745, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30993052

RESUMEN

The ability of microorganisms to degrade xenobiotics can be exploited to develop cost-effective and eco-friendly bioremediation technologies. Microorganisms can degrade almost all organic pollutants, but this process might be very slow in some cases. A promising way to enhance removal of recalcitrant xenobiotics from the environment lies in the interactions between plant exudates such as plant secondary metabolites (PSMs) and microorganisms. Although there is a considerable body of evidence that PSMs can alter the microbial community composition and stimulate the microbial degradation of xenobiotics, their mechanisms of action remain poorly understood. With this in mind, our aim was to demonstrate that similarity between the chemical structures of PSMs and xenobiotics results in higher micropollutant degradation rates, and the occurrence of corresponding bacterial degradative genes. To verify this, the present study analyses the influence of syringic acid, a plant secondary metabolite, on the bacterial degradation of an herbicide, 4-chloro-2-methylphenoxyacetic acid (MCPA). In particular, the presence of appropriate MCPA degradative genes, MCPA removal efficiency and changes in samples phytotoxicity have been analyzed. Significant MCPA depletion was achieved in samples enriched with syringic acid. The results confirmed not only greater MCPA removal from the samples upon spiking with syringic acid, and thus decreased phytotoxicity, but also the presence of a greater number of genes responsible for MCPA biodegradation. 16S rRNA gene sequence analysis revealed ubiquitous enrichment of the ß-proteobacteria Rhodoferax, Achromobacter, Burkholderia and Cupriavidus. The obtained results provide further confirmation that plant metabolites released into the rhizosphere can stimulate biodegradation of xenobiotics, including MCPA.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...