RESUMEN
BACKGROUND: Defective mitochondria and aberrant brain mitochondrial bioenergetics are consistent features in syndromic intellectual disability disorders, such as Rett syndrome (RTT), a rare neurologic disorder that severely affects mainly females carrying mutations in the X-linked MECP2 gene. A pool of CB1 cannabinoid receptors (CB1R), the primary receptor subtype of the endocannabinoid system in the brain, is located on brain mitochondrial membranes (mtCB1R), where it can locally regulate energy production, synaptic transmission and memory abilities through the inhibition of the intra-mitochondrial protein kinase A (mtPKA). In the present study, we asked whether an overactive mtCB1R-mtPKA signaling might underlie the brain mitochondrial alterations in RTT and whether its modulation by systemic administration of the CB1R inverse agonist rimonabant might improve bioenergetics and cognitive defects in mice modeling RTT. METHODS: Rimonabant (0.3 mg/kg/day, intraperitoneal injections) was administered daily to symptomatic female mice carrying a truncating mutation of the Mecp2 gene and its effects on brain mitochondria functionality, systemic oxidative status, and memory function were assessed. RESULTS: mtCB1R is overexpressed in the RTT mouse brain. Subchronic treatment with rimonabant normalizes mtCB1R expression in RTT mouse brains, boosts mtPKA signaling, and restores the defective brain mitochondrial bioenergetics, abnormal peripheral redox homeostasis, and impaired cognitive abilities in RTT mice. LIMITATIONS: The lack of selectivity of the rimonabant treatment towards mtCB1R does not allow us to exclude that the beneficial effects exerted by the treatment in the RTT mouse model may be ascribed more broadly to the modulation of CB1R activity and distribution among intracellular compartments, rather than to a selective effect on mtCB1R-mediated signaling. The low sample size of few experiments is a further limitation that has been addressed replicating the main findings under different experimental conditions. CONCLUSIONS: The present data identify mtCB1R overexpression as a novel molecular alteration in the RTT mouse brain that may underlie defective brain mitochondrial bioenergetics and cognitive dysfunction.
Asunto(s)
Encéfalo , Modelos Animales de Enfermedad , Metabolismo Energético , Mitocondrias , Receptor Cannabinoide CB1 , Síndrome de Rett , Rimonabant , Animales , Femenino , Ratones , Encéfalo/metabolismo , Encéfalo/efectos de los fármacos , Metabolismo Energético/efectos de los fármacos , Proteína 2 de Unión a Metil-CpG/metabolismo , Proteína 2 de Unión a Metil-CpG/genética , Mitocondrias/metabolismo , Mitocondrias/efectos de los fármacos , Receptor Cannabinoide CB1/metabolismo , Receptor Cannabinoide CB1/genética , Receptor Cannabinoide CB1/antagonistas & inhibidores , Síndrome de Rett/metabolismo , Síndrome de Rett/tratamiento farmacológico , Síndrome de Rett/genética , Rimonabant/farmacologíaRESUMEN
With the aim of identifying novel antagonists selective for the EphA receptor family, a combined experimental and computational approach was taken to investigate the molecular basis of the recognition between a prototypical Eph-ephrin antagonist (UniPR1447) and two representative receptors of the EphA and EphB subfamilies, namely, EphA2 and EphB2 receptors. The conformational free-energy surface (FES) of the binding state of UniPR1447 within the ligand binding domain of EphA2 and EphB2, reconstructed from molecular dynamics (MD) simulations performed on the microsecond time scale, was exploited to drive the design and synthesis of a novel antagonist selective for EphA2 over the EphB2 receptor. The availability of compounds with this pharmacological profile will help discriminate the importance of these two receptors in the insurgence and progression of cancer.
Asunto(s)
Receptor EphA2 , Receptor EphB2 , Humanos , Ligandos , Simulación de Dinámica Molecular , Unión Proteica , Receptor EphA2/antagonistas & inhibidores , Receptor EphB2/antagonistas & inhibidoresRESUMEN
The Bcl-2-associated athanogene 3 (BAG3) protein plays multiple roles in controlling cellular homeostasis, and it has been reported to be deregulated in many cancers, leading tumor cell apoptosis escape. BAG3 protein is then an emerging target for its oncogenic activities in both leukemia and solid cancers, such as medulloblastoma. In this work a series of forty-four compounds were designed and successfully synthesized by the modification and optimization of a previously reported 2,4-thiazolidinedione derivative 28. Using an efficient cloning and transfection in human embryonic kidney HEK-293T cells, BAG3 was collected and purified by chromatographic techniques such as IMAC and SEC, respectively. Subsequently, through Surface Plasmon Resonance (SPR) all the compounds were evaluated for their binding ability to BAG3, highlighting the compound FB49 as the one having the greatest affinity for the protein (Kd = 45 ± 6 µM) also against the reference compound 28. Further analysis carried out by Saturation Transfer Difference (STD) Nuclear Magnetic Resonance (NMR) spectroscopy further confirmed the highest affinity of FB49 for the protein. In vitro biological investigation showed that compound FB49 is endowed with an antiproliferative activity in the micromolar range in three human tumoral cell lines and more importantly is devoid of toxicity in human peripheral mononuclear cell deriving from healthy donors. Moreover, FB49 was able to block cell cycle in G1 phase and to induce apoptosis as well as autophagy in medulloblastoma HD-MB03 treated cells. In addition, FB49 demonstrated a synergistic effect when combined with a chemotherapy cocktail of Vincristine, Etoposide, Cisplatin, Cyclophosphamide (VECC). In conclusion we have demonstrated that FB49 is a new derivative able to bind human BAG3 with high affinity and could be used as BAG3 modulator in cancers correlated with overexpression of this protein.
Asunto(s)
Neoplasias Cerebelosas , Meduloblastoma , Tiazolidinedionas , Humanos , Meduloblastoma/tratamiento farmacológico , Apoptosis , Tiazolidinedionas/farmacología , Línea Celular Tumoral , Proteínas Adaptadoras Transductoras de Señales , Proteínas Reguladoras de la ApoptosisRESUMEN
To be profitably exploited in medicine, nanosized systems must be endowed with biocompatibility, targeting capability, the ability to evade the immune system, and resistance to clearance. Currently, biogenic nanoparticles, such as extracellular vesicles (EVs), are intensively investigated as the platform that naturally recapitulates these highly needed characteristics. EV native targeting properties and pharmacokinetics can be further augmented by decorating the EV surface with specific target ligands as antibodies. However, to date, studies dealing with the functionalization of the EV surface with proteins have never considered the protein corona "variable", namely the fact that extrinsic proteins may spontaneously adsorb on the EV surface, contributing to determine the surface, and in turn the biological identity of the EV. In this work, we explore and compare the two edge cases of EVs modified with the antibody Cetuximab (CTX) by chemisorption of CTX (through covalent binding via biorthogonal click-chemistry) and by formation of a physisorbed CTX corona. The results indicate that (i) no differences exist between the two formulations in terms of binding affinity imparted by molecular recognition of CTX versus its natural binding partner (epidermal growth factor receptor, EGFR), but (ii) significant differences emerge at the cellular level, where CTX-EVs prepared by click chemistry display superior binding and uptake toward target cells, very likely due to the higher robustness of the CTX anchorage.
RESUMEN
The characterization of modifications of microbial proteins is of primary importance to dissect pathogen lifecycle mechanisms and could be useful in identifying therapeutic targets. Attempts to solve this issue yielded only partial and non-exhaustive results. We developed a multidisciplinary approach by coupling in vitro infection assay, mass spectrometry (MS), protein 3D modelling, and surface plasma resonance (SPR). As a proof of concept, the effect of low UV-C (273 nm) irradiation on SARS-CoV-2 spike (S) protein was investigated. Following UV-C exposure, MS analysis identified, among other modifications, the disruption of a disulphide bond within the conserved S2 subunit of S protein. Computational analyses revealed that this bond breakage associates with an allosteric effect resulting in the generation of a closed conformation with a reduced ability to bind the ACE2 receptor. The UV-C-induced reduced affinity of S protein for ACE2 was further confirmed by SPR analyses and in vitro infection assays. This comprehensive approach pinpoints the S2 domain of S protein as a potential therapeutic target to prevent SARS-CoV-2 infection. Notably, this workflow could be used to screen a wide variety of microbial protein domains, resulting in a precise molecular fingerprint and providing new insights to adequately address future epidemics.
Asunto(s)
COVID-19 , Humanos , SARS-CoV-2/metabolismo , Glicoproteína de la Espiga del Coronavirus/metabolismo , Enzima Convertidora de Angiotensina 2/metabolismo , Unión ProteicaRESUMEN
Metformin is the most common anti-diabetic drug and a promising therapy for disorders beyond diabetes, including Rett syndrome (RTT), a rare neurologic disease characterized by severe intellectual disability. A 10-day-long treatment rescued aberrant mitochondrial activity and restrained oxidative stress in a female RTT mouse model. However, this treatment regimen did not improve the phenotype of RTT mice. In the present study, we demonstrate that a 4-month-long treatment with metformin (150 mg/Kg/day, delivered in drinking bottles) provides a selective normalization of cognitive flexibility defects in RTT female mice at an advanced stage of disease, but it does not affect their impaired general health status and abnormal motor skills. The 4-month-long treatment also rescues the reduced activity of mitochondrial respiratory chain complex activities, the defective brain ATP production and levels as well as the increased production of reactive oxidizing species in the whole blood of RTT mice. A significant boost of PGC-1α-dependent pathways related to mitochondrial biogenesis and antioxidant defense occurs in the brain of RTT mice that received the metformin treatment. Further studies will have to verify whether these effects may underlie its long-lasting beneficial effects on brain energy metabolism.
Asunto(s)
Diabetes Mellitus , Metformina , Síndrome de Rett , Animales , Femenino , Ratones , Encéfalo/metabolismo , Cognición , Modelos Animales de Enfermedad , Metformina/farmacología , Síndrome de Rett/tratamiento farmacológicoRESUMEN
Cystic fibrosis is a hereditary disease mainly caused by the deletion of the Phe 508 (F508del) of the cystic fibrosis transmembrane conductance regulator (CFTR) protein that is thus withheld in the endoplasmic reticulum and rapidly degraded by the ubiquitin/proteasome system. Cystic fibrosis remains a potentially fatal disease, but it has become treatable as a chronic condition due to some CFTR-rescuing drugs that, when used in combination, increase in their therapeutic effect due to a synergic action. Also, dietary supplementation of natural compounds in combination with approved drugs could represent a promising strategy to further alleviate cystic fibrosis symptoms. On these bases, we screened by in silico drug repositioning 846 small synthetic or natural compounds from the AIFA database to evaluate their capacity to interact with the highly druggable lumacaftor binding site of F508del-CFTR. Among the identified hits, nicotinamide (NAM) was predicted to accommodate into the lumacaftor binding region of F508del-CFTR without competing against the drug but rather stabilizing its binding. The effective capacity of NAM to bind F508del-CFTR in a lumacaftor-uncompetitive manner was then validated experimentally by surface plasmon resonance analysis. Finally, the capacity of NAM to synergize with lumacaftor increasing its CFTR-rescuing activity was demonstrated in cell-based assays. This study suggests the possible identification of natural small molecules devoid of side effects and endowed with the capacity to synergize with drugs currently employed for the treatment of cystic fibrosis, which hopefully will increase the therapeutic efficacy with lower doses.
Asunto(s)
Regulador de Conductancia de Transmembrana de Fibrosis Quística , Fibrosis Quística , Humanos , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Fibrosis Quística/tratamiento farmacológico , Fibrosis Quística/genética , Fibrosis Quística/metabolismo , Reposicionamiento de Medicamentos , Complejo de la Endopetidasa Proteasomal/metabolismo , Benzodioxoles/farmacología , Benzodioxoles/uso terapéutico , Aminopiridinas/farmacología , Aminopiridinas/uso terapéutico , Niacinamida/uso terapéutico , Ubiquitinas/metabolismo , MutaciónRESUMEN
INTRODUCTION: CDKL5 deficiency disorder (CDD) is a rare neurodevelopmental condition, primarily affecting girls for which no cure currently exists. Neuronal morphogenesis and plasticity impairments as well as metabolic dysfunctions occur in CDD patients. The present study explored the potential therapeutic value for CDD of FRAX486, a brain-penetrant molecule that was reported to selectively inhibit group I p21-activated kinases (PAKs), serine/threonine kinases critically involved in the regulation of neuronal morphology and glucose homeostasis. METHODS: The effects of treatment with FRAX486 on CDD-related alterations were assessed in vitro (100 nM for 48 h) on primary hippocampal cultures from Cdkl5-knockout male mice (Cdkl5-KO) and in vivo (20 mg/Kg, s.c. for 5 days) on Cdkl5-KO heterozygous females (Cdkl5-Het). RESULTS: The in vitro treatment with FRAX486 completely rescued the abnormal neuronal maturation and the number of PSD95-positive puncta in Cdkl5-KO mouse neurons. In vivo, FRAX486 normalized the general health status, the hyperactive profile and the fear learning defects of fully symptomatic Cdkl5-Het mice. Systemically, FRAX486 treatment normalized the levels of reactive oxidizing species in the whole blood and the fasting-induced hypoglycemia displayed by Cdkl5-Het mice. In the hippocampus of Cdkl5-Het mice, treatment with FRAX486 rescued spine maturation and PSD95 expression and restored the abnormal PAKs phosphorylation at sites which are critical for their activation (P-PAK-Ser144/141/139) or for the control cytoskeleton remodeling (P-PAK1-Thr212). CONCLUSIONS: Present results provide evidence that PAKs may represent innovative therapeutic targets for CDD.
Asunto(s)
Espasmos Infantiles , Quinasas p21 Activadas , Animales , Modelos Animales de Enfermedad , Homólogo 4 de la Proteína Discs Large , Síndromes Epilépticos , Femenino , Glucosa , Masculino , Ratones , Ratones Noqueados , Proteínas Serina-Treonina Quinasas/genética , Piridonas , Pirimidinas , Serina , Treonina/uso terapéuticoRESUMEN
Heparin, a naturally occurring glycosaminoglycan, has been found to have antiviral activity against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative virus of COVID-19. To elucidate the mechanistic basis for the antiviral activity of heparin, we investigated the binding of heparin to the SARS-CoV-2 spike glycoprotein by means of sliding window docking, molecular dynamics simulations, and biochemical assays. Our simulations show that heparin binds at long, positively charged patches on the spike glycoprotein, thereby masking basic residues of both the receptor-binding domain (RBD) and the multifunctional S1/S2 site. Biochemical experiments corroborated the simulation results, showing that heparin inhibits the furin-mediated cleavage of spike by binding to the S1/S2 site. Our simulations showed that heparin can act on the hinge region responsible for motion of the RBD between the inactive closed and active open conformations of the spike glycoprotein. In simulations of the closed spike homotrimer, heparin binds the RBD and the N-terminal domain of two adjacent spike subunits and hinders opening. In simulations of open spike conformations, heparin induces stabilization of the hinge region and a change in RBD motion. Our results indicate that heparin can inhibit SARS-CoV-2 infection by three mechanisms: by allosterically hindering binding to the host cell receptor, by directly competing with binding to host heparan sulfate proteoglycan coreceptors, and by preventing spike cleavage by furin. Furthermore, these simulations provide insights into how host heparan sulfate proteoglycans can facilitate viral infection. Our results will aid the rational optimization of heparin derivatives for SARS-CoV-2 antiviral therapy.
Asunto(s)
COVID-19/metabolismo , Heparina/metabolismo , Glicoproteína de la Espiga del Coronavirus/metabolismo , Antivirales/química , Antivirales/metabolismo , Antivirales/farmacología , Sitios de Unión , Heparina/química , Heparina/farmacología , Humanos , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Unión Proteica , SARS-CoV-2/metabolismo , Glicoproteína de la Espiga del Coronavirus/química , Tratamiento Farmacológico de COVID-19RESUMEN
Angiogenesis, the formation of new blood vessels from preexisting ones, is crucial for tumor growth and metastatization, and is considered a promising therapeutic target. Unfortunately, drugs directed against a specific proangiogenic growth factor or receptor turned out to be of limited benefit for oncology patients, likely due to the high biochemical redundancy of the neovascularization process. In this scenario, multitarget compounds that are able to simultaneously tackle different proangiogenic pathways are eagerly awaited. UniPR1331 is a 3ß-hydroxy-Δ5-cholenic acid derivative, which is already known to inhibit Eph-ephrin interaction. Here, we employed an analysis pipeline consisting of molecular modeling and simulation, surface plasmon resonance spectrometry, biochemical assays, and endothelial cell models to demonstrate that UniPR1331 directly interacts with the vascular endothelial growth factor receptor 2 (VEGFR2) too. The binding of UniPR1331 to VEGFR2 prevents its interaction with the natural ligand vascular endothelial growth factor and subsequent autophosphorylation, signal transduction, and in vitro proangiogenic activation of endothelial cells. In vivo, UniPR1331 inhibits tumor cell-driven angiogenesis in zebrafish. Taken together, these data shed light on the pleiotropic pharmacological effect of UniPR1331, and point to Δ5-cholenic acid as a promising molecular scaffold for the development of multitarget antiangiogenic compounds.
Asunto(s)
Efrinas , Receptor 2 de Factores de Crecimiento Endotelial Vascular , Inhibidores de la Angiogénesis/química , Inhibidores de la Angiogénesis/farmacología , Inhibidores de la Angiogénesis/uso terapéutico , Animales , Células Endoteliales/metabolismo , Efrinas/metabolismo , Efrinas/farmacología , Neovascularización Patológica/tratamiento farmacológico , Neovascularización Patológica/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo , Pez Cebra/metabolismoRESUMEN
HIV-1 transactivating factor Tat is released by infected cells. Extracellular Tat homodimerizes and engages several receptors, including integrins, vascular endothelial growth factor receptor 2 (VEGFR2) and heparan sulfate proteoglycan (HSPG) syndecan-1 expressed on various cells. By means of experimental cell models recapitulating the processes of lymphocyte trans-endothelial migration, here, we demonstrate that upon association with syndecan-1 expressed on lymphocytes, Tat triggers simultaneously the in cis activation of lymphocytes themselves and the in trans activation of endothelial cells (ECs). This "two-way" activation eventually induces lymphocyte adhesion and spreading onto the substrate and vascular endothelial (VE)-cadherin reorganization at the EC junctions, with consequent endothelial permeabilization, leading to an increased extravasation of Tat-presenting lymphocytes. By means of a panel of biochemical activation assays and specific synthetic inhibitors, we demonstrate that during the above-mentioned processes, syndecan-1, integrins, FAK, src and ERK1/2 engagement and activation are needed in the lymphocytes, while VEGFR2, integrin, src and ERK1/2 are needed in the endothelium. In conclusion, the Tat/syndecan-1 complex plays a central role in orchestrating the setup of the various in cis and in trans multimeric complexes at the EC/lymphocyte interface. Thus, by means of computational molecular modelling, docking and dynamics, we also provide a characterization at an atomic level of the binding modes of the Tat/heparin interaction, with heparin herein used as a structural analogue of the heparan sulfate chains of syndecan-1.
Asunto(s)
Endotelio/metabolismo , Proteoglicanos de Heparán Sulfato/metabolismo , Linfocitos/metabolismo , Productos del Gen tat del Virus de la Inmunodeficiencia Humana/metabolismo , Adhesión Celular , Movimiento Celular , Endotelio/química , Proteoglicanos de Heparán Sulfato/química , Humanos , Linfocitos/química , Modelos Moleculares , Estructura Molecular , Estereoisomerismo , Células Tumorales Cultivadas , Productos del Gen tat del Virus de la Inmunodeficiencia Humana/químicaRESUMEN
Rett syndrome (RTT) is a rare neurological disorder caused by mutations in the X-linked MECP2 gene and a major cause of intellectual disability in females. No cure exists for RTT. We previously reported that the behavioural phenotype and brain mitochondria dysfunction are widely rescued by a single intracerebroventricular injection of the bacterial toxin CNF1 in a RTT mouse model carrying a truncating mutation of the MeCP2 gene (MeCP2-308 mice). Given the heterogeneity of MECP2 mutations in RTT patients, we tested the CNF1 therapeutic efficacy in a mouse model carrying a null mutation (MeCP2-Bird mice). CNF1 selectively rescued cognitive defects, without improving other RTT-related behavioural alterations, and restored brain mitochondrial respiratory chain complex activity in MeCP2-Bird mice. To shed light on the molecular mechanisms underlying the differential CNF1 effects on the behavioural phenotype, we compared treatment effects on relevant signalling cascades in the brain of the two RTT models. CNF1 provided a significant boost of the mTOR activation in MeCP2-308 hippocampus, which was not observed in the MeCP2-Bird model, possibly explaining the differential effects of CNF1. These results demonstrate that CNF1 efficacy depends on the mutation beared by MeCP2-mutated mice, stressing the need of testing potential therapeutic approaches across RTT models.
Asunto(s)
Toxinas Bacterianas/farmacología , Encéfalo/efectos de los fármacos , Proteínas de Escherichia coli/farmacología , Proteína 2 de Unión a Metil-CpG/genética , Mitocondrias/efectos de los fármacos , Síndrome de Rett/tratamiento farmacológico , Animales , Toxinas Bacterianas/administración & dosificación , Encéfalo/metabolismo , Modelos Animales de Enfermedad , Proteínas de Escherichia coli/administración & dosificación , Miedo/efectos de los fármacos , Femenino , Infusiones Intraventriculares , Mutación con Pérdida de Función , Masculino , Trastornos de la Memoria/tratamiento farmacológico , Trastornos de la Memoria/etiología , Ratones Mutantes , Proteínas de Microfilamentos/metabolismo , Mitocondrias/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Síndrome de Rett/etiología , Serina-Treonina Quinasas TOR/metabolismoRESUMEN
Computational drug repositioning is of growing interest to academia and industry, for its ability to rapidly screen a huge number of candidates in silico (exploiting comprehensive drug datasets) together with reduced development cost and time. The potential of drug repositioning has not been fully evaluated yet for cystic fibrosis (CF), a disease mainly caused by deletion of Phe 508 (F508del) of the cystic fibrosis transmembrane conductance regulator (CFTR) protein. F508del-CFTR is thus withheld in the endoplasmic reticulum and rapidly degraded by the ubiquitin/proteasome system. CF is still a fatal disease. Nowadays, it is treatable by some CFTR-rescuing drugs, but new-generation drugs with stronger therapeutic benefits and fewer side effects are still awaited. In this manuscript we report about the results of a pilot computational drug repositioning screening in search of F508del-CFTR-targeted drugs performed on AIFA library by means of a dedicated computational pipeline and surface plasmon resonance binding assay to experimentally validate the computational findings.
Asunto(s)
Regulador de Conductancia de Transmembrana de Fibrosis Quística/antagonistas & inhibidores , Fenilalanina/antagonistas & inhibidores , Bibliotecas de Moléculas Pequeñas/farmacología , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Conjuntos de Datos como Asunto , Relación Dosis-Respuesta a Droga , Reposicionamiento de Medicamentos , Humanos , Estructura Molecular , Fenilalanina/metabolismo , Bibliotecas de Moléculas Pequeñas/química , Relación Estructura-ActividadRESUMEN
Cystic fibrosis (CF) is the autosomal recessive disorder most recurrent in Caucasian populations. It is caused by different mutations in the cystic fibrosis transmembrane regulator protein (CFTR) gene, with F508del being the most common. During the last years, small-molecule therapy chosen to contrast CF relied on compounds that correct CFTR misfolding and ER retention (correctors such as VX-809), or defective channel gating (potentiators such as VX-770). Combination therapy with the two series of drugs has been applied, leading to the approval of several multi-drugs such as Orkambi. Despite this, this treatment proved to be only partially effective making the search for novel modulators an urgent need to contrast CF. Recently, we reported compound 2a as reference compound of a series of aminoarylthiazole-VX-809 hybrid derivatives exhibiting promising F508del-CFTR corrector ability. Herein, we report exploring the docking mode of the prototype VX-809 and of 2a in order to derive useful guidelines for the rational design of novel optimized analogues. To demonstrate experimentally their effective F508del-CFTR-binding and rescuing potential, the most promising derivatives had been synthesized and evaluated in biological assays including YFP functional assay on F508del-CFTR CFBE41o-cells, trans epithelial electrical resistance (TEER) and surface plasmon resonance (SPR). This multidisciplinary strategy led to the discovery of a second series of hybrids including 7j and 7m endowed with higher potency than the prototype.
Asunto(s)
Aminopiridinas/metabolismo , Aminopiridinas/farmacología , Benzodioxoles/metabolismo , Benzodioxoles/farmacología , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Aminopiridinas/síntesis química , Benzodioxoles/síntesis química , Línea Celular , Regulador de Conductancia de Transmembrana de Fibrosis Quística/química , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Diseño de Fármacos , Humanos , Simulación del Acoplamiento Molecular , Mutación , Unión Proteica , Dominios ProteicosRESUMEN
Metformin is the first-line therapy for diabetes, even in children, and a promising attractive candidate for drug repurposing. Mitochondria are emerging as crucial targets of metformin action both in the periphery and in the brain. The present study evaluated whether treatment with metformin may rescue brain mitochondrial alterations and contrast the increased oxidative stress in a validated mouse model of Rett syndrome (RTT), a rare neurologic disorder of monogenic origin characterized by severe behavioral and physiological symptoms. No cure for RTT is available. In fully symptomatic RTT mice (12 months old MeCP2-308 heterozygous female mice), systemic treatment with metformin (100 mg/kg ip for 10 days) normalized the reduced mitochondrial ATP production and ATP levels in the whole-brain, reduced brain oxidative damage, and rescued the increased production of reactive oxidizing species in blood. A 10-day long treatment with metformin also boosted pathways related to mitochondrial biogenesis and antioxidant defense in the brain of metformin-treated RTT mice. This treatment regimen did not improve general health status and motor dysfunction in RTT mice at an advanced stage of the disease. Present results provide evidence that systemic treatment with metformin may represent a novel, repurposable therapeutic strategy for RTT.
RESUMEN
Cystic fibrosis transmembrane conductance regulator (CFTR)-rescuing drugs have already transformed cystic fibrosis (CF) from a fatal disease to a treatable chronic condition. However, new-generation drugs able to bind CFTR with higher specificity/affinity and to exert stronger therapeutic benefits and fewer side effects are still awaited. Computational methods and biosensors have become indispensable tools in the process of drug discovery for many important human pathologies. Instead, they have been used only piecemeal in CF so far, calling for their appropriate integration with well-tried CF biochemical and cell-based models to speed up the discovery of new CFTR-rescuing drugs. This review will give an overview of the available structures and computational models of CFTR and of the biosensors, biochemical and cell-based assays already used in CF-oriented studies. It will also give the reader some insights about how to integrate these tools as to improve the efficiency of the drug discovery process targeted to CFTR.
Asunto(s)
Regulador de Conductancia de Transmembrana de Fibrosis Quística/química , Regulador de Conductancia de Transmembrana de Fibrosis Quística/efectos de los fármacos , Descubrimiento de Drogas/métodos , Técnicas Biosensibles , Biología Computacional , Fibrosis Quística/tratamiento farmacológico , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Humanos , Modelos Moleculares , Conformación ProteicaRESUMEN
p17 matrix protein released by HIV+ cells interacts with leukocytes heparan sulfate proteoglycans (HSPGs), CXCR1 and CXCR2 exerting different cytokine-like activities that contribute to AIDS pathogenesis. Since the bioactive form of several cytokines is represented by dimers/oligomers and oligomerization is promoted by binding to heparin or HSPGs, here we evaluated if heparin/HSPGs also promote p17 oligomerization. Heparin favours p17 dimer, trimer and tetramer assembly, in a time- and biphasic dose-dependent way. Heparin-induced p17 oligomerization is of electrostatic nature, being it prevented by NaCl, by removing negative sulfated groups of heparin and by neutralizing positive lysine residues in the p17 N-terminus. A new computational protocol has been implemented to study heparin chains up to 24-mer accommodating a p17 dimer. Molecular dynamics show that, in the presence of heparin, two p17 molecules undergo conformational modifications creating a continuous "electropositive channel" in which heparin sulfated groups interact with p17 basic amino acids, promoting its dimerization. At the cell surface, HSPGs induce p17 oligomerization, as demonstrated by using B-lymphoblastoid Namalwa cells overexpressing the HSPG Syndecan-1. Also, HSPGs on the surface of BJAB and Raji human B-lymphoblastoid cells are required to p17 to induce ERK1/2 activation, suggesting that HS-induced oligomerization plays a role in p17-induced lymphoid dysregulation during AIDS.
Asunto(s)
Síndrome de Inmunodeficiencia Adquirida/metabolismo , Antígenos VIH , VIH-1 , Sistema de Señalización de MAP Quinasas , Multimerización de Proteína , Sindecano-1 , Productos del Gen gag del Virus de la Inmunodeficiencia Humana , Línea Celular Tumoral , Antígenos VIH/química , Antígenos VIH/metabolismo , VIH-1/química , VIH-1/metabolismo , Heparina/química , Heparina/metabolismo , Humanos , Sindecano-1/química , Sindecano-1/metabolismo , Productos del Gen gag del Virus de la Inmunodeficiencia Humana/química , Productos del Gen gag del Virus de la Inmunodeficiencia Humana/metabolismoRESUMEN
Sialic acid is associated with glycoproteins and gangliosides of eukaryotic cells. It regulates various molecular interactions, being implicated in inflammation and cancer, where its expression is regulated by sialyltransferases and sialidases. Angiogenesis, the formation of new capillaries, takes place during inflammation and cancer, and represents the outcome of several interactions occurring at the endothelial surface among angiogenic growth factors, inhibitors, receptors, gangliosides and cell-adhesion molecules. Here, we elaborate on the evidences that many structures involved in angiogenesis are sialylated and that their interactions depend on sialic acid with implications in angiogenesis itself, inflammation and cancer. We also discuss the possibility to exploit sialic acid as a target for the development of novel antiangiogenic drugs.
Asunto(s)
Inhibidores de la Angiogénesis/farmacología , Descubrimiento de Drogas , Terapia Molecular Dirigida , Ácido N-Acetilneuramínico/metabolismo , Neovascularización Patológica/tratamiento farmacológico , Inhibidores de la Angiogénesis/química , Animales , Descubrimiento de Drogas/métodos , Gangliósidos/metabolismo , Glicoproteínas/metabolismo , Humanos , Inflamación/complicaciones , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Modelos Moleculares , Terapia Molecular Dirigida/métodos , Neoplasias/complicaciones , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Neovascularización Patológica/complicaciones , Neovascularización Patológica/metabolismoRESUMEN
Cystic fibrosis (CF) is mainly caused by the deletion of Phe 508 (ΔF508) in the cystic fibrosis transmembrane conductance regulator (CFTR) protein that is thus withheld in the endoplasmic reticulum and rapidly degraded by the ubiquitin/proteasome system. New drugs able to rescue ΔF508-CFTR trafficking are eagerly awaited. An integrated bioinformatics and surface plasmon resonance (SPR) approach was here applied to investigate the rescue mechanism(s) of a series of CFTR-ligands including VX809, VX770 and some aminoarylthiazole derivatives (AAT). Computational studies tentatively identified a large binding pocket in the ΔF508-CFTR nucleotide binding domain-1 (NBD1) and predicted all the tested compounds to bind to three sub-regions of this main pocket. Noticeably, the known CFTR chaperone keratin-8 (K8) seems to interact with some residues located in one of these sub-pockets, potentially interfering with the binding of some ligands. SPR results corroborated all these computational findings. Moreover, for all the considered ligands, a statistically significant correlation was determined between their binding capability to ΔF508-NBD1 measured by SPR and the pockets availability measured by computational studies. Taken together, these results demonstrate a strong agreement between the in silico prediction and the SPR-generated binding data, suggesting a path to speed up the identification of new drugs for the treatment of cystic fibrosis.