Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Bot Stud ; 65(1): 11, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38656420

RESUMEN

BACKGROUND: Swertia banzragczii and S. marginata are important medicinal species in Mongolia. However, their taxonomic positions and genetic backgrounds remain unknown. In this study, we explored the complete chloroplast genomes and DNA barcoding of these species and compared them with those of closely related species within the subgenus to determine their taxonomic positions and phylogenetic relationships. RESULT: The chloroplast genomes of S. banzragczii and S. marginata encoded 114 genes, including 80 protein-coding genes, 30 tRNA genes, and 4 rRNA genes. Among them, 16 genes contained a single intron, and 2 genes had two introns. Closely related species had a conserved genome structure and gene content. Only differences in genome length were noticed, which were caused by the expansion and contraction of the inverted repeat (IR) region and loss of exons in some genes. The trnH-GUG-psbA and trnD-GUC-trnY-GUA intergenic regions had high genetic diversity within Swertia plastomes. Overall, S. banzragczii and S. marginata are true species and belong to the subgenus Swertia. CONCLUSIONS: These results provide valuable genetic and morphological information on rare and subendemic Swertia species in Mongolia, which can be used for further advanced studies on the Swertia genus.

2.
Mycobiology ; 52(1): 13-29, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38415175

RESUMEN

In this study, we updated and revised the checklist of macrofungi, along with the distribution of phytogeographical regions and the regional conservation status in Mongolia. The checklist comprises 677 macrofungal species belonging to 284 genera and 119 families in the country. Based on previous studies, 18 species are currently invasive to Mongolia. In this checklist, only four species are endemic to Mongolia. Among the 677 species, the regional conservation status of 51 species was previously assessed as threatened in the country. Furthermore, we collected all available occurrence records from various sources. A total of 4733 occurrences of 655 species across Mongolia were analyzed for species richness based on a 0.5° × 0.5° grid cell size. We found the records to be unevenly distributed across Mongolia, where records from the northern and central parts dominate. Among these, we identified 43 grids with a high diversity of macrofungal species. Most of these grids did not reside inside by protected geographical areas.

3.
PhytoKeys ; 192: 63-169, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35437387

RESUMEN

In this study, we critically revised and updated the checklist of native vascular plants of Mongolia. The checklist comprises 3,041 native vascular plant taxa (2,835 species and 206 infraspecific species) from 653 genera and 111 families, including 7 lycophytes, 41 ferns, 21 gymnosperms, and 2,972 angiosperms. In the angiosperms, we identified the 14 families with the greatest species richness, ranging from 50 to 456 taxa. Species endemism is also noted here; 102 taxa are endemic to Mongolia, and 275 taxa are sub-endemic that co-occur in adjacent countries. Since 2014, a total of 14 taxa have been described new to science based on morphological evidences. Moreover, five genera and 74 taxa were newly added to the flora of Mongolia. Based on our critical revisions, names of three families, 21 genera, and 230 species have been changed in comparison to the previous checklist, "Conspectus of the vascular plants of Mongolia" (2014).

4.
Korean J Food Sci Anim Resour ; 37(5): 735-742, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29147097

RESUMEN

This study was conducted to isolate and characterize Paenibacillus sp. MBT213 possessing ß-glucosidase activity from raw milk, and examine the enzymatic capacity on the hydrolysis of a major ginsenoside (Rb1). Strain MBT213 was found to have a high hydrolytic ability on ginsenoside Rb1 by Esculin Iron Agar test. 16S rDNA analysis revealed that MBT213 was Paenibacillu sp. Crude enzyme of MBT213 strain exhibited high conversion capacity on ginsenoside Rb1 into ginsenoside Rd proven by TLC and HPLC analyses. The API ZYM kit confirmed that Paenibacillu sp. MBT213 exerted higher ß-glucosidase and ß-galactosidase activity than other strains. Optimum pH and temperature for crude enzyme were found at 7.0 and 35°C in hydrolysis of ginsenoside Rb1. After 10 d of optimal reaction conditions for the crude enzyme, ginsenoside Rb1 fully converted to ginsenoside Rd. Ginseng roots (20%) were fermented for 14 d, and analyzed by HPLC showed that amount of ginsenoside Rb1 significantly decreased, while that of ginsenoside Rd was significantly increased. The study confirmed that the ß-glucosidase produced by Paenibacillus sp. MBT213 can hydrolyze the major ginsenoside Rb1 and convert to Rd during fermentation of the ginseng. The ß-glucosidase activity of this novel Paenibacillus sp. MBT213 strain may be utilized in development of variety of health foods, dairy foods and pharmaceutical products.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA