Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Colloid Interface Sci ; 613: 218-223, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35033767

RESUMEN

Hydrogen sulfide (H2S) is an important signalling molecule with potential pharmaceutical applications. In pursuit of a suitable delivery system for H2S, herein we apply an amphiphilic trisulfide to concomitantly alter the mesophase behaviour of dispersed lipid particles and enable triggered H2S release. Amperometric release studies indicate the trisulfide acts as a sustained H2S donor, with inclusion into the mesophase attenuating release vs neat dispersed trisulfide. Taken together the results highlight the potential for including trisulfide-based additives in stimuli-responsive drug delivery vehicles.


Asunto(s)
Sulfuro de Hidrógeno , Cristales Líquidos , Preparaciones Farmacéuticas , Sistemas de Liberación de Medicamentos , Compuestos de Sulfhidrilo
2.
Biomater Sci ; 9(3): 835-846, 2021 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-33231231

RESUMEN

The progression of cancer has been closely-linked with augmentation of cellular reactive oxygen species (ROS) levels and ROS-associated changes in the tumour microenvironment (TME), including alterations to the extracellular matrix and associated low drug uptake. Herein we report the application of a co-culture model to simulate the ROS based cell-cell interactions in the TME using fibroblasts and breast cancer cells, and describe how novel reactive polymers can be used to modulate those interactions. Under the co-culture conditions, both cell types exhibited modifications in behaviour, including significant overproduction of ROS in the cancer cells, and elevation of the collagen-1 secretion and stained actin filament intensity in the fibroblasts. To examine the potential of using reactive antioxidant polymers to intercept ROS communication and thereby manipulate the TME, we employed H2S-releasing macromolecular conjugates which have been previously demonstrated to mitigate ROS production in HEK cells. The specific conjugate used, mPEG-SSS-cholesteryl (T), significantly reduced ROS levels in co-cultured cancer cells by approximately 50%. This reduction was significantly greater than that observed with the other positive antioxidant controls. Exposure to T was also found to downregulate levels of collagen-1 in the co-cultured fibroblasts, while exhibiting less impact on cells in mono-culture. This would suggest a possible downstream effect of ROS-mitigation by T on stromal-tumour cell signalling. Since fibroblast-derived collagens modulate crucial steps in tumorigenesis, this ROS-associated effect could potentially be harnessed to slow cancer progression. The model may also be beneficial for interrogating the impact of antioxidants on naturally enhanced ROS levels, rather than relying on the application of exogenous oxidants to simulate elevated ROS levels.


Asunto(s)
Neoplasias de la Mama , Neoplasias de la Mama/tratamiento farmacológico , Técnicas de Cocultivo , Colágeno , Colágeno Tipo I , Fibroblastos , Humanos , Especies Reactivas de Oxígeno , Microambiente Tumoral
3.
ACS Macro Lett ; 9(4): 553-557, 2020 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-35648511

RESUMEN

Dithioesters are well-established as efficient reversible addition-fragmentation chain transfer (RAFT) agents. More recently, certain small molecule dithioesters have been reported to release the biological signaling molecule hydrogen sulfide (H2S) upon exposure to cysteine. Herein, we examine the propensity of polymers synthesized using RAFT with a dithioester chain transfer agent to release H2S via reaction of cysteine with constitutive dithioester end-groups. Homocysteine-triggered release of H2S from these materials is also observed, with evidence suggesting that the mechanism is analogous to the reaction with cysteine.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...