Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Circulation ; 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38836349

RESUMEN

BACKGROUND: Cardiomyocyte growth is coupled with active protein synthesis, which is one of the basic biological processes in living cells. However, it is unclear whether the unfolded protein response transducers and effectors directly take part in the control of protein synthesis. The connection between critical functions of the unfolded protein response in cellular physiology and requirements of multiple processes for cell growth prompted us to investigate the role of the unfolded protein response in cell growth and underlying molecular mechanisms. METHODS: Cardiomyocyte-specific inositol-requiring enzyme 1α (IRE1α) knockout and overexpression mouse models were generated to explore its function in vivo. Neonatal rat ventricular myocytes were isolated and cultured to evaluate the role of IRE1α in cardiomyocyte growth in vitro. Mass spectrometry was conducted to identify novel interacting proteins of IRE1α. Ribosome sequencing and polysome profiling were performed to determine the molecular basis for the function of IRE1α in translational control. RESULTS: We show that IRE1α is required for cell growth in neonatal rat ventricular myocytes under prohypertrophy treatment and in HEK293 cells in response to serum stimulation. At the molecular level, IRE1α directly interacts with eIF4G and eIF3, 2 critical components of the translation initiation complex. We demonstrate that IRE1α facilitates the formation of the translation initiation complex around the endoplasmic reticulum and preferentially initiates the translation of transcripts with 5' terminal oligopyrimidine motifs. We then reveal that IRE1α plays an important role in determining the selectivity and translation of these transcripts. We next show that IRE1α stimulates the translation of epidermal growth factor receptor through an unannotated terminal oligopyrimidine motif in its 5' untranslated region. We further demonstrate a physiological role of IRE1α-governed protein translation by showing that IRE1α is essential for cardiomyocyte growth and cardiac functional maintenance under hemodynamic stress in vivo. CONCLUSIONS: These studies suggest a noncanonical, essential role of IRE1α in orchestrating protein synthesis, which may have important implications in cardiac hypertrophy in response to pressure overload and general cell growth under other physiological and pathological conditions.

3.
bioRxiv ; 2023 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-37205565

RESUMEN

Collagen is one the most abundant proteins and the main cargo of the secretory pathway, contributing to hepatic fibrosis and cirrhosis due to excessive deposition of extracellular matrix. Here we investigated the possible contribution of the unfolded protein response, the main adaptive pathway that monitors and adjusts the protein production capacity at the endoplasmic reticulum, to collagen biogenesis and liver disease. Genetic ablation of the ER stress sensor IRE1 reduced liver damage and diminished collagen deposition in models of liver fibrosis triggered by carbon tetrachloride (CCl 4 ) administration or by high fat diet. Proteomic and transcriptomic profiling identified the prolyl 4-hydroxylase (P4HB, also known as PDIA1), which is known to be critical for collagen maturation, as a major IRE1-induced gene. Cell culture studies demonstrated that IRE1 deficiency results in collagen retention at the ER and altered secretion, a phenotype rescued by P4HB overexpression. Taken together, our results collectively establish a role of the IRE1/P4HB axis in the regulation of collagen production and its significance in the pathogenesis of various disease states.

4.
Cells Dev ; 170: 203781, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35483574

RESUMEN

The development of the central nervous system requires a series of morphogenetic events that shape brain and spinal cord structures. Several brain regions and neural circuits are formed by differential gene expression patterns and cell migration events involving neurons. During neurogenesis and neuritogenesis, increased demand for protein synthesis occurs to express key neuronal proteins to generate axons, dendrites, and synapsis. The endoplasmic reticulum (ER) is a central hub controlling protein homeostasis (proteostasis), impacting a wide range of cellular processes required for brain function. Although most of the field has focused on studying the role of ER stress in neurodegenerative diseases marked by abnormal protein aggregation, accumulating evidence indicates that ER proteostasis contributes to brain development and may impact neurodevelopmental processes such as neuronal migration, differentiation, and function. Here, we review emerging evidence linking neurodevelopment with ER proteostasis and its relevance to human disorders.


Asunto(s)
Proteostasis , Respuesta de Proteína Desplegada , Encéfalo/metabolismo , Retículo Endoplásmico/metabolismo , Estrés del Retículo Endoplásmico , Humanos , Proteínas/metabolismo
5.
Methods Mol Biol ; 2378: 141-168, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34985699

RESUMEN

The endoplasmic reticulum (ER) stress sensor IRE1 is a a major player of the unfolded protein response (UPR), the main pathway driving adaptation processes to restore proteostasis.  In addition, overactivation of IRE1 signaling contributes to a variety of pathologies including diabetes, neurodegenerative diseases, and cancer. Under ER stress, IRE1 auto-transphosphorylates and oligomerizes, triggering the activation of its endoribonuclease domain located in the cytosolic region. Active IRE1 catalyzes the splicing of the mRNA encoding for the XBP1 transcription factor, in addition to degrade several RNAs through a process known as regulated IRE1-dependent decay of mRNA (RIDD). Besides its role as an UPR transducer, several posttranslational modifications and protein-protein interactions can regulate IRE1 activity and modulate its signaling in the absence of stress. Thus, investigating the function of IRE1 in physiology and disease requires the use of complementary approaches. Here, we provide detailed protocols to perform four different assays to study IRE1 activation and signaling: (i) Phos-tag gels to evaluate the phosphorylation status of IRE1, (ii) microscopy using TREX-IRE1-GFP cells to measure IRE1 oligomerization, (iii) conventional RT-PCR to assess XBP1 mRNA processing, and (iv) quantitative PCR to determine the levels of canonical UPR target genes and the degradation of several mRNAs that are target of RIDD. We propose to use these experimental strategies as "gold standards" to study IRE1 signaling.


Asunto(s)
Endorribonucleasas , Proteínas Serina-Treonina Quinasas , Estrés del Retículo Endoplásmico/fisiología , Endorribonucleasas/genética , Endorribonucleasas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Transducción de Señal , Respuesta de Proteína Desplegada
6.
EMBO J ; 41(2): e105531, 2022 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-34904718

RESUMEN

Recessive gene mutations underlie many developmental disorders and often lead to disabling neurological problems. Here, we report identification of a homozygous c.170G>A (p.Cys57Tyr or C57Y) mutation in the gene coding for protein disulfide isomerase A3 (PDIA3, also known as ERp57), an enzyme that catalyzes formation of disulfide bonds in the endoplasmic reticulum, to be associated with syndromic intellectual disability. Experiments in zebrafish embryos show that PDIA3C57Y expression is pathogenic and causes developmental defects such as axonal disorganization as well as skeletal abnormalities. Expression of PDIA3C57Y in the mouse hippocampus results in impaired synaptic plasticity and memory consolidation. Proteomic and functional analyses reveal that PDIA3C57Y expression leads to dysregulation of cell adhesion and actin cytoskeleton dynamics, associated with altered integrin biogenesis and reduced neuritogenesis. Biochemical studies show that PDIA3C57Y has decreased catalytic activity and forms disulfide-crosslinked aggregates that abnormally interact with chaperones in the endoplasmic reticulum. Thus, rare disease gene variant can provide insight into how perturbations of neuronal proteostasis can affect the function of the nervous system.


Asunto(s)
Discapacidades del Desarrollo/genética , Retículo Endoplásmico/metabolismo , Proteína Disulfuro Isomerasas/genética , Proteostasis , Adolescente , Adulto , Animales , Axones/metabolismo , Axones/patología , Adhesión Celular , Células Cultivadas , Niño , Citoesqueleto/metabolismo , Discapacidades del Desarrollo/metabolismo , Discapacidades del Desarrollo/patología , Femenino , Hipocampo/metabolismo , Hipocampo/patología , Humanos , Integrinas/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Mutación Missense , Proyección Neuronal , Plasticidad Neuronal , Linaje , Proteína Disulfuro Isomerasas/metabolismo , Pez Cebra
7.
Sci Adv ; 7(46): eabe5469, 2021 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-34767445

RESUMEN

Programmed cell death is regulated by the balance between activating and inhibitory signals. Here, we have identified RECS1 (responsive to centrifugal force and shear stress 1) [also known as TMBIM1 (transmembrane BAX inhibitor motif containing 1)] as a proapoptotic member of the TMBIM family. In contrast to other proteins of the TMBIM family, RECS1 expression induces cell death through the canonical mitochondrial apoptosis pathway. Unbiased screening indicated that RECS1 sensitizes cells to lysosomal perturbations. RECS1 localizes to lysosomes, where it regulates their acidification and calcium content, triggering lysosomal membrane permeabilization. Structural modeling and electrophysiological studies indicated that RECS1 is a pH-regulated calcium channel, an activity that is essential to trigger cell death. RECS1 also sensitizes whole animals to stress in vivo in Drosophila melanogaster and zebrafish models. Our results unveil an unanticipated function for RECS1 as a proapoptotic component of the TMBIM family that ignites cell death programs at lysosomes.

10.
Cell Death Dis ; 11(8): 648, 2020 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-32811828

RESUMEN

Caveolin-1 (CAV1), is a broadly expressed, membrane-associated scaffolding protein that acts both, as a tumor suppressor and a promoter of metastasis, depending on the type of cancer and stage. CAV1 is downregulated in human tumors, tumor cell lines and oncogene-transformed cells. The tumor suppressor activity of CAV1 is generally associated with its presence at the plasma membrane, where it participates, together with cavins, in the formation of caveolae and also has been suggested to interact with and inhibit a wide variety of proteins through interactions mediated by the scaffolding domain. However, a pool of CAV1 is also located at the endoplasmic reticulum (ER), modulating the secretory pathway in a manner dependent on serine-80 (S80) phosphorylation. In melanoma cells, CAV1 expression suppresses tumor formation, but the protein is largely absent from the plasma membrane and does not form caveolae. Perturbations to the function of the ER are emerging as a central driver of cancer, highlighting the activation of the unfolded protein response (UPR), a central pathway involved in stress mitigation. Here we provide evidence indicating that the expression of CAV1 represses the activation of the UPR in vitro and in solid tumors, reflected in the attenuation of PERK and IRE1α signaling. These effects correlated with increased susceptibility of cells to ER stress and hypoxia. Interestingly, the tumor suppressor activity of CAV1 was abrogated by site-directed mutagenesis of S80, correlating with a reduced ability to repress the UPR. We conclude that the tumor suppression by CAV1 involves the attenuation of the UPR, and identified S80 as essential in this context. This suggests that intracellular CAV1 regulates cancer through alternative signaling outputs.


Asunto(s)
Caveolina 1/metabolismo , Respuesta de Proteína Desplegada/fisiología , Animales , Caveolina 1/fisiología , Línea Celular Tumoral , Membrana Celular/metabolismo , Retículo Endoplásmico/metabolismo , Estrés del Retículo Endoplásmico/fisiología , Endorribonucleasas/metabolismo , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Fosforilación , Proteínas Serina-Treonina Quinasas/metabolismo , Transducción de Señal/efectos de los fármacos , eIF-2 Quinasa/metabolismo
11.
J Cell Sci ; 133(15)2020 08 11.
Artículo en Inglés | MEDLINE | ID: mdl-32788208

RESUMEN

Different perturbations alter the function of the endoplasmic reticulum (ER), resulting in the accumulation of misfolded proteins in its lumen, a condition termed ER stress. To restore ER proteostasis, a highly conserved pathway is engaged, known as the unfolded protein response (UPR), triggering adaptive programs or apoptosis of terminally damaged cells. IRE1α (also known as ERN1), the most conserved UPR sensor, mediates the activation of responses to determine cell fate under ER stress. The complexity of IRE1α regulation and its signaling outputs is mediated in part by the assembly of a dynamic multi-protein complex, named the UPRosome, that regulates IRE1α activity and the crosstalk with other pathways. We discuss several studies identifying components of the UPRosome that have illuminated novel functions in cell death, autophagy, DNA damage, energy metabolism and cytoskeleton dynamics. Here, we provide a theoretical analysis to assess the biological significance of the UPRosome and present the results of a systematic bioinformatics analysis of the available IRE1α interactome data sets followed by functional enrichment clustering. This in silico approach decoded that IRE1α also interacts with proteins involved in the cell cycle, transport, differentiation, response to viral infection and immune response. Thus, defining the spectrum of IRE1α-binding partners will reveal novel signaling outputs and the relevance of the pathway to human diseases.


Asunto(s)
Endorribonucleasas , Proteínas Serina-Treonina Quinasas , Retículo Endoplásmico/metabolismo , Estrés del Retículo Endoplásmico , Endorribonucleasas/genética , Endorribonucleasas/metabolismo , Humanos , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Respuesta de Proteína Desplegada
12.
Nat Commun ; 11(1): 2401, 2020 05 14.
Artículo en Inglés | MEDLINE | ID: mdl-32409639

RESUMEN

The molecular connections between homeostatic systems that maintain both genome integrity and proteostasis are poorly understood. Here we identify the selective activation of the unfolded protein response transducer IRE1α under genotoxic stress to modulate repair programs and sustain cell survival. DNA damage engages IRE1α signaling in the absence of an endoplasmic reticulum (ER) stress signature, leading to the exclusive activation of regulated IRE1α-dependent decay (RIDD) without activating its canonical output mediated by the transcription factor XBP1. IRE1α endoribonuclease activity controls the stability of mRNAs involved in the DNA damage response, impacting DNA repair, cell cycle arrest and apoptosis. The activation of the c-Abl kinase by DNA damage triggers the oligomerization of IRE1α to catalyze RIDD. The protective role of IRE1α under genotoxic stress is conserved in fly and mouse. Altogether, our results uncover an important intersection between the molecular pathways that sustain genome stability and proteostasis.


Asunto(s)
Supervivencia Celular/genética , Reparación del ADN , Proteínas de Drosophila/metabolismo , Endorribonucleasas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Estabilidad del ARN/genética , Animales , Daño del ADN , Proteínas de Drosophila/genética , Drosophila melanogaster , Endorribonucleasas/genética , Femenino , Fibroblastos , Inestabilidad Genómica , Células HEK293 , Humanos , Ratones , Ratones Noqueados , Multimerización de Proteína , Proteínas Serina-Treonina Quinasas/genética , Proteostasis/genética , Proteínas Proto-Oncogénicas c-abl/metabolismo , ARN Mensajero/metabolismo
14.
Cancers (Basel) ; 11(5)2019 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-31064137

RESUMEN

Endoplasmic reticulum (ER) proteostasis is often altered in tumor cells due to intrinsic (oncogene expression, aneuploidy) and extrinsic (environmental) challenges. ER stress triggers the activation of an adaptive response named the Unfolded Protein Response (UPR), leading to protein translation repression, and to the improvement of ER protein folding and clearance capacity. The UPR is emerging as a key player in malignant transformation and tumor growth, impacting on most hallmarks of cancer. As such, the UPR can influence cancer cells' migration and invasion properties. In this review, we overview the involvement of the UPR in cancer progression. We discuss its cross-talks with the cell migration and invasion machinery. Specific aspects will be covered including extracellular matrix (ECM) remodeling, modification of cell adhesion, chemo-attraction, epithelial-mesenchymal transition (EMT), modulation of signaling pathways associated with cell mobility, and cytoskeleton remodeling. The therapeutic potential of targeting the UPR to treat cancer will also be considered with specific emphasis in the impact on metastasis and tissue invasion.

15.
Nat Cell Biol ; 21(6): 755-767, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31110288

RESUMEN

Mitochondria-associated membranes (MAMs) are central microdomains that fine-tune bioenergetics by the local transfer of calcium from the endoplasmic reticulum to the mitochondrial matrix. Here, we report an unexpected function of the endoplasmic reticulum stress transducer IRE1α as a structural determinant of MAMs that controls mitochondrial calcium uptake. IRE1α deficiency resulted in marked alterations in mitochondrial physiology and energy metabolism under resting conditions. IRE1α determined the distribution of inositol-1,4,5-trisphosphate receptors at MAMs by operating as a scaffold. Using mutagenesis analysis, we separated the housekeeping activity of IRE1α at MAMs from its canonical role in the unfolded protein response. These observations were validated in vivo in the liver of IRE1α conditional knockout mice, revealing broad implications for cellular metabolism. Our results support an alternative function of IRE1α in orchestrating the communication between the endoplasmic reticulum and mitochondria to sustain bioenergetics.


Asunto(s)
Retículo Endoplásmico/metabolismo , Endorribonucleasas/genética , Metabolismo Energético , Mitocondrias/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Animales , Calcio/metabolismo , Señalización del Calcio/genética , Retículo Endoplásmico/genética , Receptores de Inositol 1,4,5-Trifosfato/genética , Ratones , Ratones Noqueados , Mitocondrias/genética
16.
J Autoimmun ; 97: 88-99, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30391023

RESUMEN

Sjögren's syndrome (SS) is an autoimmune exocrinopathy associated with severe secretory alterations by disruption of the glandular architecture integrity, which is fundamental for a correct function and localization of the secretory machinery. Syt-1, PI(4,5)P2 and Ca2+ are significant factors controlling exocytosis in different secretory cells, the Ca2+ role being the most studied. Salivary acinar cells from SS-patients show a defective agonist-regulated intracellular Ca2+ release together with a decreased IP3R expression level, and this condition may explain a reduced water release. However, there are not reports where Syt-1, PI(4,5)P2 and Ca2+ in acinar cells of SS patients had been studied. In the present study, we analyzed the expression and/or localization of Syt-1 and PI(4,5)P2 in acinar cells of labial salivary gland biopsies from SS-patients and control individuals. Also, we evaluated whether the overexpression of Syt-1 and the loss of cell polarity induced by TNF-α or loss of interaction between acinar cell and basal lamina, alters directionality of the exocytosis process, Ca2+ signaling and α-amylase secretion in a 3D-acini model stimulated with cholinergic or ß-adrenergic agonists. In addition, the correlation between Syt-1 protein levels and clinical parameters was evaluated. The results showed an increase of Syt-1 mRNA and protein levels, and a high number of co-localization points of Syt-1/STX4 and PI(4,5)P2/Ezrin in the acinar basolateral region of LSG from SS-patients. With regard to 3D-acini, Syt-1 overexpression increased exocytosis in the apical pole compared to control acini. TNF-α stimulation increased exocytic events in the basal pole, which was further enhanced by Syt-1 overexpression. Additionally, altered acinar cell polarity affected Ca2+ signaling and amylase secretion. Overexpression of Syt-1 was associated with salivary gland alterations revealing that the secretory dysfunction in SS-patients is linked to altered expression and/or localization of secretory machinery components together with impaired epithelial cell polarity. These findings provide a novel insight on the pathological mechanism implicated in ectopic secretory products to the extracellular matrix of LSG from SS-patients, which might initiate inflammation.


Asunto(s)
Expresión Génica , Glándulas Salivales/metabolismo , Síndrome de Sjögren/etiología , Síndrome de Sjögren/metabolismo , Sinaptotagmina I/genética , Adulto , Biomarcadores , Biopsia , Calcio/metabolismo , Señalización del Calcio , Susceptibilidad a Enfermedades , Femenino , Glicosilación , Humanos , Inmunohistoquímica , Masculino , Persona de Mediana Edad , Glándulas Salivales/patología , Transducción de Señal , Síndrome de Sjögren/diagnóstico , Factor de Necrosis Tumoral alfa/metabolismo , Adulto Joven
17.
Sci Rep ; 8(1): 16678, 2018 11 12.
Artículo en Inglés | MEDLINE | ID: mdl-30420769

RESUMEN

Cyclosporine, a widely used immunosuppressant in organ transplantation and in treatment of various autoimmune diseases, activates the unfolded protein response (UPR), an ER stress coping response. In this study we discovered a new and unanticipated cyclosporine-dependent signaling pathway, with cyclosporine triggering direct activation of the UPR. COX-2 binds to and activates IRE1α, leading to IRE1α splicing of XBP1 mRNA. Molecular interaction and modeling analyses identified a novel interaction site for cyclosporine with COX-2 which caused enhancement of COX-2 enzymatic activity required for activation of the IRE1α branch of the UPR. Cyclosporine-dependent activation of COX-2 and IRE1α in mice indicated that cyclosporine-COX-2-IRE1α signaling pathway was functional in vivo. These findings identify COX-2 as a new IRE1α binding partner and regulator of the IRE1α branch of the UPR pathway, and establishes the mechanism underlying cytotoxicity associated with chronic cyclosporine exposure.


Asunto(s)
Ciclooxigenasa 2/metabolismo , Ciclosporina/farmacología , Endorribonucleasas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Respuesta de Proteína Desplegada/efectos de los fármacos , Animales , Ciclooxigenasa 2/química , Ciclooxigenasa 2/genética , Endorribonucleasas/química , Endorribonucleasas/genética , Células HEK293 , Humanos , Inmunoprecipitación , Masculino , Ratones , Simulación de Dinámica Molecular , Unión Proteica , Proteínas Serina-Treonina Quinasas/química , Proteínas Serina-Treonina Quinasas/genética , Estructura Terciaria de Proteína , Transducción de Señal/efectos de los fármacos
19.
Nat Cell Biol ; 20(8): 942-953, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-30013108

RESUMEN

Maintenance of endoplasmic reticulum (ER) proteostasis is controlled by a signalling network known as the unfolded protein response (UPR). Here, we identified filamin A as a major binding partner of the ER stress transducer IRE1α. Filamin A is an actin crosslinking factor involved in cytoskeleton remodelling. We show that IRE1α controls actin cytoskeleton dynamics and affects cell migration upstream of filamin A. The regulation of cytoskeleton dynamics by IRE1α is independent of its canonical role as a UPR mediator, serving instead as a scaffold that recruits and regulates filamin A. Targeting IRE1α expression in mice affected normal brain development, generating a phenotype resembling periventricular heterotopia, a disease linked to the loss of function of filamin A. IRE1α also modulated cell movement and cytoskeleton dynamics in fly and zebrafish models. This study unveils an unanticipated biological function of IRE1α in cell migration, whereby filamin A operates as an interphase between the UPR and the actin cytoskeleton.


Asunto(s)
Citoesqueleto de Actina/metabolismo , Movimiento Celular , Endorribonucleasas/metabolismo , Fibroblastos/metabolismo , Filaminas/metabolismo , Neuronas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Animales , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Endorribonucleasas/deficiencia , Endorribonucleasas/genética , Evolución Molecular , Femenino , Filaminas/genética , Células HEK293 , Humanos , Cinética , Masculino , Ratones , Ratones Noqueados , Neuronas/patología , Heterotopia Nodular Periventricular/genética , Heterotopia Nodular Periventricular/metabolismo , Heterotopia Nodular Periventricular/patología , Fosforilación , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Proteínas Serina-Treonina Quinasas/deficiencia , Proteínas Serina-Treonina Quinasas/genética , Transducción de Señal , Respuesta de Proteína Desplegada , Pez Cebra/genética , Pez Cebra/metabolismo , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
20.
Mol Cell ; 69(2): 238-252.e7, 2018 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-29351844

RESUMEN

Maintenance of endoplasmic reticulum (ER) proteostasis is controlled by a dynamic signaling network known as the unfolded protein response (UPR). IRE1α is a major UPR transducer, determining cell fate under ER stress. We used an interactome screening to unveil several regulators of the UPR, highlighting the ER chaperone Hsp47 as the major hit. Cellular and biochemical analysis indicated that Hsp47 instigates IRE1α signaling through a physical interaction. Hsp47 directly binds to the ER luminal domain of IRE1α with high affinity, displacing the negative regulator BiP from the complex to facilitate IRE1α oligomerization. The regulation of IRE1α signaling by Hsp47 is evolutionarily conserved as validated using fly and mouse models of ER stress. Hsp47 deficiency sensitized cells and animals to experimental ER stress, revealing the significance of Hsp47 to global proteostasis maintenance. We conclude that Hsp47 adjusts IRE1α signaling by fine-tuning the threshold to engage an adaptive UPR.


Asunto(s)
Endorribonucleasas/metabolismo , Proteínas del Choque Térmico HSP47/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Animales , Células COS , Chlorocebus aethiops , Proteínas de Unión al ADN/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Retículo Endoplásmico/metabolismo , Estrés del Retículo Endoplásmico/fisiología , Proteínas del Choque Térmico HSP47/fisiología , Humanos , Ratones , Chaperonas Moleculares/metabolismo , Transducción de Señal , Estrés Fisiológico , Factores de Transcripción/metabolismo , Respuesta de Proteína Desplegada
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...