Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Mol Biol Rep ; 51(1): 763, 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38874813

RESUMEN

BACKGROUND: Arabidopsis thaliana primary root growth has become a model for evo-devo studies due to its simplicity and facility to record cell proliferation and differentiation. To identify new genetic components relevant to primary root growth, we used a Genome-Wide Association Studies (GWAS) meta-analysis approach using data published in the last decade. In this work, we performed intra and inter-studies analyses to discover new genetic components that could participate in primary root growth. METHODS AND RESULTS: We used 639 accessions from nine different studies under control conditions and performed different GWAS tests. We found that primary root growth changes were associated with 41 genes, of which six (14.6%) have been previously described as inhibitors or promoters of primary root growth. The knockdown lines of two genes, Suppressor of Gene Silencing (SGS3), involved in tasiRNA processing, and a gene with a Sterile Alpha Motif (SAM) motif named NOJOCH MOOTS (NOJO), confirmed their role as repressors of primary root growth, none has been shown to participate in this developmental process before. CONCLUSIONS: In summary, our GWAS analysis of different available studies identified new genes that participate in primary root growth; two of them were identified as repressors of primary root growth.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Estudio de Asociación del Genoma Completo , Raíces de Plantas , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Estudio de Asociación del Genoma Completo/métodos , Raíces de Plantas/genética , Raíces de Plantas/crecimiento & desarrollo , Proteínas de Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas/genética , Polimorfismo de Nucleótido Simple/genética , Fenotipo , Genes de Plantas/genética
2.
Prog Brain Res ; 275: 165-215, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36841568

RESUMEN

This chapter utilizes genomic concepts and evolutionary perspectives to further understand the possible links between typical brain aging and neurodegenerative diseases, focusing on the two most prevalent of these: Alzheimer's disease and Parkinson's disease. Aging is the major risk factor for these neurodegenerative diseases. Researching the evolutionary and molecular underpinnings of aging helps to reveal elements of the typical aging process that leave individuals more vulnerable to neurodegenerative pathologies. Very little is known about the prevalence and susceptibility of neurodegenerative diseases in nonhuman species, as only a few individuals have been observed with these neuropathologies. However, several studies have investigated the evolution of lifespan, which is closely connected with brain size in mammals, and insights can be drawn from these to enrich our understanding of neurodegeneration. This chapter explores the relationship between the typical aging process and the events in neurodegeneration. First, we examined how age-related processes can increase susceptibility to neurodegenerative diseases. Second, we assessed to what extent neurodegeneration is an accelerated form of aging. We found that while at the phenotypic level both neurodegenerative diseases and the typical aging process share some characteristics, at the molecular level they show some distinctions in their profiles, such as variation in genes and gene expression. Furthermore, neurodegeneration of the brain is associated with an earlier onset of cellular, molecular, and structural age-related changes. In conclusion, a more integrative view of the aging process, both from a molecular and an evolutionary perspective, may increase our understanding of neurodegenerative diseases.


Asunto(s)
Enfermedad de Alzheimer , Enfermedades Neurodegenerativas , Humanos , Animales , Enfermedades Neurodegenerativas/patología , Envejecimiento/metabolismo , Enfermedad de Alzheimer/metabolismo , Encéfalo/metabolismo , Genómica , Mamíferos
3.
PLoS One ; 18(1): e0280364, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36649303

RESUMEN

The immune system plays a central role in the onset and progression of cancer. A better understanding of transcriptional changes in immune cell-related genes associated with cancer progression, and their significance in disease prognosis, is therefore needed. NanoString-based targeted gene expression profiling has advantages for deployment in a clinical setting over RNA-seq technologies. We analysed NanoString PanCancer Immune Profiling panel gene expression data encompassing 770 genes, and overall survival data, from multiple previous studies covering 10 different cancer types, including solid and blood malignancies, across 515 patients. This analysis revealed an immune gene signature comprising 39 genes that were upregulated in those patients with shorter overall survival; of these 39 genes, three (MAGEC2, SSX1 and ULBP2) were common to both solid and blood malignancies. Most of the genes identified have previously been reported as relevant in one or more cancer types. Using Cibersort, we investigated immune cell levels within individual cancer types and across groups of cancers, as well as in shorter and longer overall survival groups. Patients with shorter survival had a higher proportion of M2 macrophages and γδ T cells. Patients with longer overall survival had a higher proportion of CD8+ T cells, CD4+ T memory cells, NK cells and, unexpectedly, T regulatory cells. Using a transcriptomics platform with certain advantages for deployment in a clinical setting, our multi-cancer meta-analysis of immune gene expression and overall survival data has identified a specific transcriptional profile associated with poor overall survival.


Asunto(s)
Neoplasias , Transcriptoma , Humanos , Neoplasias/genética , Perfilación de la Expresión Génica , Pronóstico , Linfocitos T CD4-Positivos
4.
Biol Lett ; 18(2): 20210553, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35193370

RESUMEN

Females and males often exhibit different survival in nature, and it has been hypothesized that sex chromosomes may play a role in driving differential survival rates. For instance, the Y chromosome in mammals and the W chromosome in birds are often degenerated, with reduced numbers of genes, and loss of the Y chromosome in old men is associated with shorter life expectancy. However, mosaic loss of sex chromosomes has not been investigated in any non-human species. Here, we tested whether mosaic loss of the W chromosome (LOW) occurs with ageing in wild birds as a natural consequence of cellular senescence. Using loci-specific PCR and a target sequencing approach we estimated LOW in both young and adult individuals of two long-lived bird species and showed that the copy number of W chromosomes remains constant across age groups. Our results suggest that LOW is not a consequence of cellular ageing in birds. We concluded that the inheritance of the W chromosome in birds, unlike the Y chromosome in mammals, is more stable.


Asunto(s)
Cromosomas Humanos Y , Evolución Molecular , Animales , Aves/genética , Femenino , Humanos , Masculino , Mamíferos/genética , Mosaicismo , Cromosomas Sexuales/genética
5.
Immunogenetics ; 74(5): 487-496, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35084547

RESUMEN

Males and females often exhibit differences in behaviour, life histories, and ecology, many of which are typically reflected in their brains. Neuronal protection and maintenance include complex processes led by the microglia, which also interacts with metabolites such as hormones or immune components. Despite increasing interest in sex-specific brain function in laboratory animals, the significance of sex-specific immune activation in the brain of wild animals along with the variables that could affect it is widely lacking. Here, we use the Kentish plover (Charadrius alexandrinus) to study sex differences in expression of immune genes in the brain of adult males and females, in two wild populations breeding in contrasting habitats: a coastal sea-level population and a high-altitude inland population in China. Our analysis yielded 379 genes associated with immune function. We show a significant male-biased immune gene upregulation. Immune gene expression in the brain did not differ in upregulation between the coastal and inland populations. We discuss the role of dosage compensation in our findings and their evolutionary significance mediated by sex-specific survival and neuronal deterioration. Similar expression profiles in the coastal and inland populations suggest comparable genetic control by the microglia and possible similarities in pathogen pressures between habitats. We call for further studies on gene expression of males and females in wild population to understand the implications of immune function for life-histories and demography in natural systems.


Asunto(s)
Charadriiformes , Caracteres Sexuales , Animales , Evolución Biológica , Encéfalo , Charadriiformes/genética , Femenino , Expresión Génica , Masculino
6.
Nature ; 601(7892): 263-267, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34937938

RESUMEN

Cancer is a ubiquitous disease of metazoans, predicted to disproportionately affect larger, long-lived organisms owing to their greater number of cell divisions, and thus increased probability of somatic mutations1,2. While elevated cancer risk with larger body size and/or longevity has been documented within species3-5, Peto's paradox indicates the apparent lack of such an association among taxa6. Yet, unequivocal empirical evidence for Peto's paradox is lacking, stemming from the difficulty of estimating cancer risk in non-model species. Here we build and analyse a database on cancer-related mortality using data on adult zoo mammals (110,148 individuals, 191 species) and map age-controlled cancer mortality to the mammalian tree of life. We demonstrate the universality and high frequency of oncogenic phenomena in mammals and reveal substantial differences in cancer mortality across major mammalian orders. We show that the phylogenetic distribution of cancer mortality is associated with diet, with carnivorous mammals (especially mammal-consuming ones) facing the highest cancer-related mortality. Moreover, we provide unequivocal evidence for the body size and longevity components of Peto's paradox by showing that cancer mortality risk is largely independent of both body mass and adult life expectancy across species. These results highlight the key role of life-history evolution in shaping cancer resistance and provide major advancements in the quest for natural anticancer defences.


Asunto(s)
Animales de Zoológico , Dieta , Mamíferos , Neoplasias , Envejecimiento , Animales , Animales de Zoológico/clasificación , Tamaño Corporal , Peso Corporal , Carnivoría , Dieta/veterinaria , Longevidad , Mamíferos/clasificación , Neoplasias/mortalidad , Neoplasias/patología , Neoplasias/veterinaria , Filogenia , Factores de Riesgo , Especificidad de la Especie
7.
Mol Ecol ; 31(5): 1515-1526, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34918851

RESUMEN

Selection leaves signatures in the DNA sequence of genes, with many test statistics devised to detect its action. While these statistics are frequently used to support hypotheses about the adaptive significance of particular genes, the effect these genes have on reproductive fitness is rarely quantified experimentally. Consequently, it is unclear how gene-level signatures of selection are associated with empirical estimates of gene effect on fitness. Eukaryotic data sets that permit this comparison are very limited. Using the model plant Arabidopsis thaliana, for which these resources are available, we calculated seven gene-level substitution and polymorphism-based statistics commonly used to infer selection (dN/dS, NI, DOS, Tajima's D, Fu and Li's D*, Fay and Wu's H, and Zeng's E) and, using knockout lines, compared these to gene-level estimates of effect on fitness. We found that consistent with expectations, essential genes were more likely to be classified as negatively selected. By contrast, using 379 Arabidopsis genes for which data was available, we found no evidence that genes predicted to be positively selected had a significantly different effect on fitness than genes evolving more neutrally. We discuss these results in the context of the analytic challenges posed by Arabidopsis, one of the only systems in which this study could be conducted, and advocate for examination in additional systems. These results are relevant to the evaluation of genome-wide studies across species where experimental fitness data is unavailable, as well as highlighting an increasing need for the latter.


Asunto(s)
Arabidopsis , Aptitud Genética , Arabidopsis/genética , Secuencia de Bases , Polimorfismo Genético , Selección Genética
8.
Commun Biol ; 4(1): 1418, 2021 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-34934158

RESUMEN

Mosaic loss of the Y chromosome (LOY) is the most frequent chromosomal aberration in aging men and is strongly correlated with mortality and disease. To date, studies of LOY have only been performed in humans, and so it is unclear whether LOY is a natural consequence of our relatively long lifespan or due to exposure to human-specific external stressors. Here, we explored whether LOY could be detected in rats. We applied a locus-specific PCR and target sequencing approach that we used as a proxy to estimate LOY in 339 samples covering eleven tissues from young and old individuals. We detected LOY in four tissues of older rats. To confirm the results from the PCR screening, we re-sequenced 60 full genomes from old rats, which revealed that the Y chromosome is the sole chromosome with low copy numbers. Finally, our results suggest that LOY is associated with other structural aberrations on the Y chromosome and possibly linked to the mosaic loss of the X chromosome. This is the first report, to our knowledge, demonstrating that the patterns of LOY observed in aging men are also present in a rodent, and conclude that LOY may be a natural process in placental mammals.


Asunto(s)
Envejecimiento/genética , Variación Genética , Monosomía , Cromosoma Y/patología , Factores de Edad , Animales , Masculino , Ratas , Ratas Wistar
9.
PLoS One ; 16(4): e0247671, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33793561

RESUMEN

Transcriptomes are known to organize themselves into gene co-expression clusters or modules where groups of genes display distinct patterns of coordinated or synchronous expression across independent biological samples. The functional significance of these co-expression clusters is suggested by the fact that highly coexpressed groups of genes tend to be enriched in genes involved in common functions and biological processes. While gene co-expression is widely assumed to reflect close regulatory proximity, the validity of this assumption remains unclear. Here we use a simple synthetic gene regulatory network (GRN) model and contrast the resulting co-expression structure produced by these networks with their known regulatory architecture and with the co-expression structure measured in available human expression data. Using randomization tests, we found that the levels of co-expression observed in simulated expression data were, just as with empirical data, significantly higher than expected by chance. When examining the source of correlated expression, we found that individual regulators, both in simulated and experimental data, fail, on average, to display correlated expression with their immediate targets. However, highly correlated gene pairs tend to share at least one common regulator, while most gene pairs sharing common regulators do not necessarily display correlated expression. Our results demonstrate that widespread co-expression naturally emerges in regulatory networks, and that it is a reliable and direct indicator of active co-regulation in a given cellular context.


Asunto(s)
Biología Computacional/métodos , Regulación de la Expresión Génica , Redes Reguladoras de Genes , Secuencias Reguladoras de Ácidos Nucleicos , Factores de Transcripción/metabolismo , Adolescente , Adulto , Algoritmos , Encéfalo/fisiología , Niño , Preescolar , Perfilación de la Expresión Génica/métodos , Humanos , Lactante , Recién Nacido , Adulto Joven
10.
Mol Biol Evol ; 38(8): 3247-3266, 2021 07 29.
Artículo en Inglés | MEDLINE | ID: mdl-33871580

RESUMEN

Alternative synonymous codons are often used at unequal frequencies. Classically, studies of such codon usage bias (CUB) attempted to separate the impact of neutral from selective forces by assuming that deviations from a predicted neutral equilibrium capture selection. However, GC-biased gene conversion (gBGC) can also cause deviation from a neutral null. Alternatively, selection has been inferred from CUB in highly expressed genes, but the accuracy of this approach has not been extensively tested, and gBGC can interfere with such extrapolations (e.g., if expression and gene conversion rates covary). It is therefore critical to examine deviations from a mutational null in a species with no gBGC. To achieve this goal, we implement such an analysis in the highly AT rich genome of Dictyostelium discoideum, where we find no evidence of gBGC. We infer neutral CUB under mutational equilibrium to quantify "adaptive codon preference," a nontautologous genome wide quantitative measure of the relative selection strength driving CUB. We observe signatures of purifying selection consistent with selection favoring adaptive codon preference. Preferred codons are not GC rich, underscoring the independence from gBGC. Expression-associated "preference" largely matches adaptive codon preference but does not wholly capture the influence of selection shaping patterns across all genes, suggesting selective constraints associated specifically with high expression. We observe patterns consistent with effects on mRNA translation and stability shaping adaptive codon preference. Thus, our approach to quantifying adaptive codon preference provides a framework for inferring the sources of selection that shape CUB across different contexts within the genome.


Asunto(s)
Uso de Codones , Dictyostelium/genética , Selección Genética , Adaptación Biológica , Composición de Base , Biosíntesis de Proteínas , ARN de Transferencia/metabolismo
11.
Nucleic Acids Res ; 49(D1): D144-D150, 2021 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-33084905

RESUMEN

Alternative splicing is widespread throughout eukaryotic genomes and greatly increases transcriptomic diversity. Many alternative isoforms have functional roles in developmental processes and are precisely temporally regulated. To facilitate the study of alternative splicing in a developmental context, we created MeDAS, a Metazoan Developmental Alternative Splicing database. MeDAS is an added-value resource that re-analyses publicly archived RNA-seq libraries to provide quantitative data on alternative splicing events as they vary across the time course of development. It has broad temporal and taxonomic scope and is intended to assist the user in identifying trends in alternative splicing throughout development. To create MeDAS, we re-analysed a curated set of 2232 Illumina polyA+ RNA-seq libraries that chart detailed time courses of embryonic and post-natal development across 18 species with a taxonomic range spanning the major metazoan lineages from Caenorhabditis elegans to human. MeDAS is freely available at https://das.chenlulab.com both as raw data tables and as an interactive browser allowing searches by species, tissue, or genomic feature (gene, transcript or exon ID and sequence). Results will provide details on alternative splicing events identified for the queried feature and can be visualised at the gene-, transcript- and exon-level as time courses of expression and inclusion levels, respectively.


Asunto(s)
Empalme Alternativo , Bases de Datos Genéticas , Regulación del Desarrollo de la Expresión Génica , Genoma , ARN Mensajero/genética , Transcriptoma , Anfibios/genética , Anfibios/crecimiento & desarrollo , Anfibios/metabolismo , Animales , Caenorhabditis elegans/genética , Caenorhabditis elegans/crecimiento & desarrollo , Caenorhabditis elegans/metabolismo , Cefalocordados/genética , Cefalocordados/crecimiento & desarrollo , Cefalocordados/metabolismo , Exones , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Internet , Intrones , Mamíferos/genética , Mamíferos/crecimiento & desarrollo , Mamíferos/metabolismo , ARN Mensajero/metabolismo , Reptiles/genética , Reptiles/crecimiento & desarrollo , Reptiles/metabolismo , Programas Informáticos , Urocordados/genética , Urocordados/crecimiento & desarrollo , Urocordados/metabolismo , Pez Cebra/genética , Pez Cebra/crecimiento & desarrollo , Pez Cebra/metabolismo
12.
BMC Evol Biol ; 20(1): 103, 2020 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-32807071

RESUMEN

BACKGROUND: Vertebrates exhibit diverse sex determination systems and reptiles stand out by having highly variable sex determinations that include temperature-dependent and genotypic sex determination (TSD and GSD, respectively). Theory predicts that populations living in either highly variable or cold climatic conditions should evolve genotypic sex determination to buffer the populations from extreme sex ratios, yet these fundamental predictions have not been tested across a wide range of taxa. RESULTS: Here, we use phylogenetic analyses of 213 reptile species representing 38 families (TSD = 101 species, GSD = 112 species) and climatic data to compare breeding environments between reptiles with GSD versus TSD. We show that GSD and TSD are confronted with the same level of climatic fluctuation during breeding seasons. However, TSD reptiles are significantly associated with warmer climates. We found a strong selection on the breeding season length that minimises exposure to cold and fluctuating climate. Phylogenetic path analyses comparing competing evolutionary hypotheses support that transitions in sex determination systems influenced the ambient temperature at which the species reproduces and nests. In turn, this interaction affects other variables such as the duration of the breeding season and life-history traits. CONCLUSIONS: Taken together, our results challenge long-standing hypotheses about the association between sex determination and climate variability. We also show that ambient temperature is important during breeding seasons and it helps explain the effects of sex determination systems on the geographic distribution of extant reptile species.


Asunto(s)
Clima , Reptiles/fisiología , Procesos de Determinación del Sexo , Temperatura , Animales , Cruzamiento , Filogenia , Reptiles/genética , Procesos de Determinación del Sexo/genética , Razón de Masculinidad
13.
Genome Biol Evol ; 12(11): 2015-2028, 2020 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-32790864

RESUMEN

Placental mammals present 180 million-year-old Y chromosomes that have retained a handful of dosage-sensitive genes. However, the expression evolution of Y-linked genes across placental groups has remained largely unexplored. Here, we expanded the number of Y gametolog sequences by analyzing ten additional species from previously unexplored groups. We detected seven remarkably conserved genes across 25 placental species with known Y repertoires. We then used RNA-seq data from 17 placental mammals to unveil the expression evolution of XY gametologs. We found that Y gametologs followed, on average, a 3-fold expression loss and that X gametologs also experienced some expression reduction, particularly in primates. Y gametologs gained testis specificity through an accelerated expression decay in somatic tissues. Moreover, despite the substantial expression decay of Y genes, the combined expression of XY gametologs in males is higher than that of both X gametologs in females. Finally, our work describes several features of the Y chromosome in the last common mammalian ancestor.


Asunto(s)
Evolución Biológica , Euterios/genética , Expresión Génica , Genes Ligados a X , Genes Ligados a Y , Animales , Secuencia de Bases , Secuencia Conservada , Compensación de Dosificación (Genética) , Femenino , Humanos , Masculino , Especificidad de Órganos
14.
Genome Biol Evol ; 12(6): 924-930, 2020 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-32433751

RESUMEN

The water skinks Eulamprus tympanum and Eulamprus heatwolei show thermally induced sex determination where elevated temperatures give rise to male offspring. Paradoxically, Eulamprus species reproduce in temperatures of 12-15 °C making them outliers when compared with reptiles that use temperature as a cue for sex determination. Moreover, these two species are among the very few viviparous reptiles reported to have thermally induced sex determination. Thus, we tested whether these skinks possess undetected sex chromosomes with thermal override. We produced transcriptome and genome data for E. heatwolei. We found that E. heatwolei presents XY chromosomes that include 14 gametologs with regulatory functions. The Y chromosomal region is 79-116 Myr old and shared between water and spotted skinks. Our work provides clear evidence that climate could be useful to predict the type of sex determination systems in reptiles and it also indicates that viviparity is strictly associated with sex chromosomes.


Asunto(s)
Lagartos/genética , Cromosomas Sexuales , Procesos de Determinación del Sexo , Viviparidad de Animales no Mamíferos/genética , Animales , Femenino , Masculino
15.
Front Neurosci ; 14: 602642, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33390887

RESUMEN

Alzheimer's disease (AD)-related degenerative decline is associated to the presence of amyloid beta (Aß) plaque lesions and neuro fibrillary tangles (NFT). However, the precise molecular mechanisms linking Aß deposition and neurological decline are still unclear. Here we combine genome-wide transcriptional profiling of the insular cortex of 3xTg-AD mice and control littermates from early through to late adulthood (2-14 months of age), with behavioral and biochemical profiling in the same animals to identify transcriptional determinants of functional decline specifically associated to build-up of Aß deposits. Differential expression analysis revealed differentially expressed genes (DEGs) in the cortex long before observed onset of behavioral symptoms in this model. Using behavioral and biochemical data derived from the same mice and samples, we found that down but not up-regulated DEGs show a stronger average association with learning performance than random background genes in control not seen in AD mice. Conversely, these same genes were found to have a stronger association with Aß deposition than background genes in AD but not in control mice, thereby identifying these genes as potential intermediaries between abnormal Aß/NFT deposition and functional decline. Using a complementary approach, gene ontology analysis revealed a highly significant enrichment of learning and memory, associative, memory, and cognitive functions only among down-regulated, but not up-regulated, DEGs. Our results demonstrate wider transcriptional changes triggered by the abnormal deposition of Aß/NFT occurring well before behavioral decline and identify a distinct set of genes specifically associated to abnormal Aß protein deposition and cognitive decline.

16.
Front Genet ; 10: 919, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31781152

RESUMEN

Understanding how incipient species are maintained with gene flow is a fundamental question in evolutionary biology. Whole genome sequencing of multiple individuals holds great potential to illustrate patterns of genomic differentiation as well as the associated evolutionary histories. Kentish (Charadrius alexandrinus) and the white-faced (C. dealbatus) plovers, which differ in their phenotype, ecology and behavior, are two incipient species and parapatrically distributed in East Asia. Previous studies show evidence of genetic diversification with gene flow between the two plovers. Under this scenario, it is of great importance to explore the patterns of divergence at the genomic level and to determine whether specific regions are involved in reproductive isolation and local adaptation. Here we present the first population genomic analysis of the two incipient species based on the de novo Kentish plover reference genome and resequenced populations. We show that the two plover lineages are distinct in both nuclear and mitochondrial genomes. Using model-based coalescence analysis, we found that population sizes of Kentish plover increased whereas white-faced plovers declined during the Last Glaciation Period. Moreover, the two plovers diverged allopatrically, with gene flow occurring after secondary contact. This has resulted in low levels of genome-wide differentiation, although we found evidence of a few highly differentiated genomic regions in both the autosomes and the Z-chromosome. This study illustrates that incipient shorebird species with gene flow after secondary contact can exhibit discrete divergence at specific genomic regions and provides basis to further exploration on the genetic basis of relevant phenotypic traits.

17.
Nat Commun ; 10(1): 3284, 2019 07 23.
Artículo en Inglés | MEDLINE | ID: mdl-31337766

RESUMEN

Conflict is thought to play a critical role in the evolution of social interactions by promoting diversity or driving accelerated evolution. However, despite our sophisticated understanding of how conflict shapes social traits, we have limited knowledge of how it impacts molecular evolution across the underlying social genes. Here we address this problem by analyzing the genome-wide impact of social interactions using genome sequences from 67 Dictyostelium discoideum strains. We find that social genes tend to exhibit enhanced polymorphism and accelerated evolution. However, these patterns are not consistent with conflict driven processes, but instead reflect relaxed purifying selection. This pattern is most likely explained by the conditional nature of social interactions, whereby selection on genes expressed only in social interactions is diluted by generations of inactivity. This dilution of selection by inactivity enhances the role of drift, leading to increased polymorphism and accelerated evolution, which we call the Red King process.


Asunto(s)
Dictyostelium/genética , Evolución Molecular , Interacciones Microbianas/genética , Dictyostelium/fisiología
18.
Proc Natl Acad Sci U S A ; 116(4): 1331-1336, 2019 01 22.
Artículo en Inglés | MEDLINE | ID: mdl-30617061

RESUMEN

Social monogamy, typically characterized by the formation of a pair bond, increased territorial defense, and often biparental care, has independently evolved multiple times in animals. Despite the independent evolutionary origins of monogamous mating systems, several homologous brain regions and neuropeptides and their receptors have been shown to play a conserved role in regulating social affiliation and parental care, but little is known about the neuromolecular mechanisms underlying monogamy on a genomic scale. Here, we compare neural transcriptomes of reproductive males in monogamous and nonmonogamous species pairs of Peromyscus mice, Microtus voles, parid songbirds, dendrobatid frogs, and Xenotilapia species of cichlid fishes. We find that, while evolutionary divergence time between species or clades did not explain gene expression similarity, characteristics of the mating system correlated with neural gene expression patterns, and neural gene expression varied concordantly across vertebrates when species transition to monogamy. Our study provides evidence of a universal transcriptomic mechanism underlying the evolution of monogamy in vertebrates.


Asunto(s)
Transcriptoma/genética , Vertebrados/genética , Animales , Anuros/genética , Arvicolinae/genética , Encéfalo/fisiología , Cíclidos/genética , Expresión Génica/genética , Masculino , Ratones , Apareamiento , Peromyscus/genética , Filogenia , Reproducción/genética , Conducta Sexual Animal/fisiología , Pájaros Cantores/genética , Especificidad de la Especie
19.
Neurobiol Aging ; 74: 147-160, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30448614

RESUMEN

Different cell types have different postmitotic maintenance requirements. Nerve cells, however, are unique in this respect as they need to survive and preserve their functional complexity for the entire lifetime of the organism, and failure at any level of their supporting mechanisms leads to a wide range of neurodegenerative conditions. Whether these differences across tissues arise from the activation of distinct cell type-specific maintenance mechanisms or the differential activation of a common molecular repertoire is not known. To identify the transcriptional signature of postmitotic cellular longevity (PMCL), we compared whole-genome transcriptome data from human tissues ranging in longevity from 120 days to over 70 years and found a set of 81 genes whose expression levels are closely associated with increased cell longevity. Using expression data from 10 independent sources, we found that these genes are more highly coexpressed in longer-living tissues and are enriched in specific biological processes and transcription factor targets compared with randomly selected gene samples. Crucially, we found that PMCL-associated genes are downregulated in the cerebral cortex and substantia nigra of patients with Alzheimer's and Parkinson's disease, respectively, as well as Hutchinson-Gilford progeria-derived fibroblasts, and that this downregulation is specifically linked to their underlying association with cellular longevity. Moreover, we found that sexually dimorphic brain expression of PMCL-associated genes reflects sexual differences in lifespan in humans and macaques. Taken together, our results suggest that PMCL-associated genes are part of a generalized machinery of postmitotic maintenance and functional stability in both neural and non-neural cells and support the notion of a common molecular repertoire differentially engaged in different cell types with different survival requirements.


Asunto(s)
Supervivencia Celular/genética , Mitosis/genética , Neuronas , Transcripción Genética/genética , Animales , Corteza Cerebral/metabolismo , Regulación hacia Abajo , Fibroblastos/patología , Expresión Génica , Estudio de Asociación del Genoma Completo , Humanos , Macaca , Enfermedades Neurodegenerativas/etiología , Enfermedades Neurodegenerativas/genética , Enfermedades Neurodegenerativas/patología , Caracteres Sexuales , Sustancia Negra/metabolismo , Transcriptoma/genética
20.
Artículo en Inglés | MEDLINE | ID: mdl-27994116

RESUMEN

A fundamental question in biology is how the extraordinary range of living organisms arose. In this theme issue, we celebrate how evolutionary studies on the origins of morphological diversity have changed over the past 350 years since the first publication of the Philosophical Transactions of The Royal Society Current understanding of this topic is enriched by many disciplines, including anatomy, palaeontology, developmental biology, genetics and genomics. Development is central because it is the means by which genetic information of an organism is translated into morphology. The discovery of the genetic basis of development has revealed how changes in form can be inherited, leading to the emergence of the field known as evolutionary developmental biology (evo-devo). Recent approaches include imaging, quantitative morphometrics and, in particular, genomics, which brings a new dimension. Articles in this issue illustrate the contemporary evo-devo field by considering general principles emerging from genomics and how this and other approaches are applied to specific questions about the evolution of major transitions and innovations in morphology, diversification and modification of structures, intraspecific morphological variation and developmental plasticity. Current approaches enable a much broader range of organisms to be studied, thus building a better appreciation of the origins of morphological diversity.This article is part of the themed issue 'Evo-devo in the genomics era, and the origins of morphological diversity'.


Asunto(s)
Evolución Biológica , Biología Evolutiva , Genómica , Animales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...