Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
PLoS Pathog ; 20(5): e1011749, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38739648

RESUMEN

Hepatitis delta virus (HDV) infection represents the most severe form of human viral hepatitis; however, the mechanisms underlying its pathology remain incompletely understood. We recently developed an HDV mouse model by injecting adeno-associated viral vectors (AAV) containing replication-competent HBV and HDV genomes. This model replicates many features of human infection, including liver injury. Notably, the extent of liver damage can be diminished with anti-TNF-α treatment. Here, we found that TNF-α is mainly produced by macrophages. Downstream of the TNF-α receptor (TNFR), the receptor-interacting serine/threonine-protein kinase 1 (RIPK1) serves as a cell fate regulator, playing roles in both cell survival and death pathways. In this study, we explored the function of RIPK1 and other host factors in HDV-induced cell death. We determined that the scaffolding function of RIPK1, and not its kinase activity, offers partial protection against HDV-induced apoptosis. A reduction in RIPK1 expression in hepatocytes through CRISPR-Cas9-mediated gene editing significantly intensifies HDV-induced damage. Contrary to our expectations, the protective effect of RIPK1 was not linked to TNF-α or macrophage activation, as their absence did not alter the extent of damage. Intriguingly, in the absence of RIPK1, macrophages confer a protective role. However, in animals unresponsive to type-I IFNs, RIPK1 downregulation did not exacerbate the damage, suggesting RIPK1's role in shielding hepatocytes from type-I IFN-induced cell death. Interestingly, while the damage extent is similar between IFNα/ßR KO and wild type mice in terms of transaminase elevation, their cell death mechanisms differ. In conclusion, our findings reveal that HDV-induced type-I IFN production is central to inducing hepatocyte death, and RIPK1's scaffolding function offers protective benefits. Thus, type-I IFN together with TNF-α, contribute to HDV-induced liver damage. These insights may guide the development of novel therapeutic strategies to mitigate HDV-induced liver damage and halt disease progression.


Asunto(s)
Citocinas , Virus de la Hepatitis Delta , Hepatocitos , Proteína Serina-Treonina Quinasas de Interacción con Receptores , Animales , Ratones , Hepatocitos/metabolismo , Proteína Serina-Treonina Quinasas de Interacción con Receptores/metabolismo , Proteína Serina-Treonina Quinasas de Interacción con Receptores/genética , Citocinas/metabolismo , Virus de la Hepatitis Delta/fisiología , Hepatitis D/metabolismo , Muerte Celular , Ratones Endogámicos C57BL , Apoptosis , Ratones Noqueados , Humanos , Factor de Necrosis Tumoral alfa/metabolismo , Modelos Animales de Enfermedad
2.
Viruses ; 16(3)2024 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-38543745

RESUMEN

Hepatitis D virus (HDV) infection represents the most severe form of chronic viral hepatitis. We have shown that the delivery of HDV replication-competent genomes to the hepatocytes using adeno-associated virus (AAV-HDV) as gene delivery vehicles offers a unique platform to investigate the molecular aspects of HDV and associated liver damage. For the purpose of this study, we generated HDV genomes modified by site-directed mutagenesis aimed to (i) prevent some post-translational modifications of HDV antigens (HDAgs) such as large-HDAg (L-HDAg) isoprenylation or short-HDAg (S-HDAg) phosphorylation; (ii) alter the localization of HDAgs within the subcellular compartments; and (iii) inhibit the right conformation of the delta ribozyme. First, the different HDV mutants were tested in vitro using plasmid-transfected Huh-7 cells and then in vivo in C57BL/6 mice using AAV vectors. We found that Ser177 phosphorylation and ribozymal activity are essential for HDV replication and HDAg expression. Mutations of the isoprenylation domain prevented the formation of infectious particles and increased cellular toxicity and liver damage. Furthermore, altering HDAg intracellular localization notably decreased viral replication, though liver damage remained unchanged versus normal HDAg distribution. In addition, a mutation in the nuclear export signal impaired the formation of infectious viral particles. These findings contribute valuable insights into the intricate mechanisms of HDV biology and have implications for therapeutic considerations.


Asunto(s)
Virus de la Hepatitis Delta , ARN Viral , Animales , Ratones , Antígenos de Hepatitis delta/genética , Antígenos de Hepatitis delta/metabolismo , ARN Viral/metabolismo , Ratones Endogámicos C57BL , Replicación Viral/genética , Procesamiento Proteico-Postraduccional , Hígado/metabolismo
3.
NPJ Vaccines ; 9(1): 48, 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38413645

RESUMEN

Age is associated with reduced efficacy of vaccines and linked to higher risk of severe COVID-19. Here we determined the impact of ageing on the efficacy of a SARS-CoV-2 vaccine based on a stabilised Spike glycoprotein (S-29) that had previously shown high efficacy in young animals. Thirteen to 18-month-old golden Syrian hamsters (GSH) and 22-23-month-old K18-hCAE2 mice were immunised twice with S-29 protein in AddaVaxTM adjuvant. GSH were intranasally inoculated with SARS-CoV-2 either two weeks or four months after the booster dose, while all K18-hACE2 mice were intranasally inoculated two weeks after the second immunisation. Body weight and clinical signs were recorded daily post-inoculation. Lesions and viral load were investigated in different target tissues. Immunisation induced seroconversion and production of neutralising antibodies; however, animals were only partially protected from weight loss. We observed a significant reduction in the amount of viral RNA and a faster viral protein clearance in the tissues of immunized animals. Infectious particles showed a faster decay in vaccinated animals while tissue lesion development was not altered. In GSH, the shortest interval between immunisation and inoculation reduced RNA levels in the lungs, while the longest interval was equally effective in reducing RNA in nasal turbinates; viral nucleoprotein amount decreased in both tissues. In mice, immunisation was able to improve the survival of infected animals. Despite the high protection shown in young animals, S-29 efficacy was reduced in the geriatric population. Our research highlights the importance of testing vaccine efficacy in older animals as part of preclinical vaccine evaluation.

4.
Lab Anim (NY) ; 52(9): 202-210, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37620562

RESUMEN

More than 40% of individuals infected by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have experienced persistent or relapsing multi-systemic symptoms months after the onset of coronavirus disease 2019 (COVID-19). This post-COVID-19 condition (PCC) has debilitating effects on the daily life of patients and encompasses a broad spectrum of neurological and neuropsychiatric symptoms including olfactory and gustative impairment, difficulty with concentration and short-term memory, sleep disorders and depression. Animal models have been instrumental to understand acute COVID-19 and validate prophylactic and therapeutic interventions. Similarly, studies post-viral clearance in hamsters, mice and nonhuman primates inoculated with SARS-CoV-2 have been useful to unveil some of the aspects of PCC. Transcriptomic alterations in the central nervous system, persistent activation of immune cells and impaired hippocampal neurogenesis seem to have a critical role in the neurological manifestations observed in animal models infected with SARS-CoV-2. Interestingly, the proinflammatory transcriptomic profile observed in the central nervous system of SARS-CoV-2-inoculated mice partially overlaps with the pathological changes that affect microglia in humans during Alzheimer's disease and aging, suggesting shared mechanisms between these conditions. None of the currently available animal models fully replicates PCC in humans; therefore, multiple models, together with the fine-tuning of experimental conditions, will probably be needed to understand the mechanisms of PCC neurological symptoms. Moreover, given that the intrinsic characteristics of the new variants of concern and the immunological status of individuals might influence PCC manifestations, more studies are needed to explore the role of these factors and their combinations in PCC, adding further complexity to the design of experimental models.


Asunto(s)
Enfermedad de Alzheimer , COVID-19 , Humanos , Cricetinae , Animales , Ratones , SARS-CoV-2 , Recuento de Leucocitos , Modelos Animales
5.
Biomed Pharmacother ; 164: 114997, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37311279

RESUMEN

The SARS-CoV-2 pandemic made evident that there are only a few drugs against coronavirus. Here we aimed to identify a cost-effective antiviral with broad spectrum activity and high safety profile. Starting from a list of 116 drug candidates, we used molecular modelling tools to rank the 44 most promising inhibitors. Next, we tested their efficacy as antivirals against α and ß coronaviruses, such as the HCoV-229E and SARS-CoV-2 variants. Four drugs, OSW-1, U18666A, hydroxypropyl-ß-cyclodextrin (HßCD) and phytol, showed in vitro antiviral activity against HCoV-229E and SARS-CoV-2. The mechanism of action of these compounds was studied by transmission electron microscopy and by fusion assays measuring SARS-CoV-2 pseudoviral entry into target cells. Entry was inhibited by HßCD and U18666A, yet only HßCD inhibited SARS-CoV-2 replication in the pulmonary Calu-3 cells. Compared to the other cyclodextrins, ß-cyclodextrins were the most potent inhibitors, which interfered with viral fusion via cholesterol depletion. ß-cyclodextrins also prevented infection in a human nasal epithelium model ex vivo and had a prophylactic effect in the nasal epithelium of hamsters in vivo. All accumulated data point to ß-cyclodextrins as promising broad-spectrum antivirals against different SARS-CoV-2 variants and distant alphacoronaviruses. Given the wide use of ß-cyclodextrins for drug encapsulation and their high safety profile in humans, our results support their clinical testing as prophylactic antivirals.


Asunto(s)
COVID-19 , Fármacos Dermatológicos , beta-Ciclodextrinas , Humanos , SARS-CoV-2 , Antivirales/farmacología , Antivirales/uso terapéutico , beta-Ciclodextrinas/farmacología , beta-Ciclodextrinas/uso terapéutico
6.
Front Microbiol ; 13: 1016201, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36458182

RESUMEN

Rodents are widely used for the development of COVID-19-like animal models, the virological outcome being determined through several laboratory methods reported in the literature. Our objective was to assess the agreement between methods performed on different sample types from 342 rodents experimentally infected with SARS-CoV-2 (289 golden Syrian hamsters and 53 K18-hACE2 mice). Our results showed moderate agreement between methods detecting active viral replication, and that increasing viral loads determined by either RT-qPCR or infectious viral titration corresponded to increasing immunohistochemical scores. The percentage of agreement between methods decreased over experimental time points, and we observed poor agreement between RT-qPCR results and viral titration from oropharyngeal swabs. In conclusion, RT-qPCR and viral titration on tissue homogenates are the most reliable techniques to determine the presence and replication of SARS-CoV-2 in the early and peak phases of infection, and immunohistochemistry is valuable to evaluate viral distribution patterns in the infected tissues.

7.
Aliment Pharmacol Ther ; 55(8): 978-993, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35292991

RESUMEN

BACKGROUND: Hepatitis delta virus (HDV), which causes the most severe form of viral hepatitis, is an obligated hepatitis B (HBV) satellite virus that can either infect naïve subjects simultaneously with HBV (co-infection), or chronically infect HBV carriers (super-infection). An estimated 12 million people are infected by HDV worldwide. AIMS: To summarise the most relevant aspects of the molecular biology of HDV, and to discuss the latest understanding of the induced pathology, interactions with the immune system, as well as both approved and investigational treatment options. METHODS: References for this review were identified through searches of PubMed with the terms "HDV" "viral hepatitis" "co-infection" and "super-infection," published between 1980 and October 2021 RESULTS: The limited access to the HDV-infected liver has hampered the investigation of the intrahepatic compartment and our understanding of the mechanisms of HDV pathogenesis. In the absence of standardised and sensitive diagnostic tools, HDV is often underdiagnosed and owing to its strong dependence on host cellular factors, the development of direct antiviral agents has been challenging. New therapeutic agents targeting different steps of the viral cycle have recently been investigated, among which bulevirtide (which was conditionally approved by EMA in July 2020) and lonafarnib; both drugs having received orphan drug designation from both the EMA and FDA. CONCLUSIONS: The HBV cure programme potentially offers a unique opportunity to enhance HDV treatment strategies. In addition, a more comprehensive analysis of the intrahepatic compartment is mandated to better understand any liver-confined interaction of HDV with the host immune system.


Asunto(s)
Coinfección , Virus de la Hepatitis Delta , Antivirales/uso terapéutico , Coinfección/tratamiento farmacológico , Humanos , Lipopéptidos
8.
Med ; 3(2): 104-118.e4, 2022 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-35072129

RESUMEN

BACKGROUND: Protection offered by coronavirus disease 2019 (COVID-19) vaccines wanes over time, requiring an evaluation of different boosting strategies to revert such a trend and enhance the quantity and quality of Spike-specific humoral and cellular immune responses. These immunological parameters in homologous or heterologous vaccination boosts have thus far been studied for mRNA and ChAdOx1 nCoV-19 vaccines, but knowledge on individuals who received a single dose of Ad26.COV2.S is lacking. METHODS: We studied Spike-specific humoral and cellular immunity in Ad26.COV2.S-vaccinated individuals (n = 55) who were either primed with Ad26.COV2.S only (n = 13) or were boosted with a homologous (Ad26.COV2.S, n = 28) or heterologous (BNT162b2, n = 14) second dose. We compared our findings with the results found in individuals vaccinated with a single (n = 16) or double (n = 44) dose of BNT162b2. FINDINGS: We observed that a strategy of heterologous vaccination enhanced the quantity and breadth of both Spike-specific humoral and cellular immunity in Ad26.COV2.S-vaccinated individuals. In contrast, the impact of the homologous boost was quantitatively minimal in Ad26.COV2.S-vaccinated individuals, and Spike-specific antibodies and T cells were narrowly focused to the S1 region. CONCLUSIONS: Despite the small sample size of the study and the lack of well-defined correlates of protection against COVID-19, the immunological features detected support the utilization of a heterologous vaccine boost in individuals who received Ad26.COV2.S vaccination. FUNDING: This study is partially supported by the Singapore Ministry of Health's National Medical Research Council under its COVID-19 Research Fund (COVID19RF3-0060, COVID19RF-001, and COVID19RF-008), The Medical College St. Bartholomew's Hospital Trustees - Pump Priming Fund for SMD COVID-19 Research.


Asunto(s)
Ad26COVS1 , COVID-19 , Anticuerpos Neutralizantes , Vacuna BNT162 , COVID-19/prevención & control , Vacunas contra la COVID-19 , ChAdOx1 nCoV-19 , Humanos , SARS-CoV-2
9.
Front Med (Lausanne) ; 8: 642723, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33987193

RESUMEN

Introduction: SARS-CoV-2 antibody detection serves as an important diagnostic marker for past SARS-CoV-2 infection and is essential to determine the spread of COVID-19, monitor potential COVID-19 long-term effects, and to evaluate possible protection from reinfection. A study was conducted across three hospital sites in a large central London NHS Trust in the UK, to evaluate the prevalence and duration of SARS-CoV-2 IgG antibody positivity in healthcare workers. Methods: A matrix equivalence study consisting of 228 participants was undertaken to evaluate the Abbott Panbio™ COVID-19 IgG/IgM rapid test device. Subsequently, 2001 evaluable healthcare workers (HCW), representing a diverse population, were enrolled in a HCW study between June and August 2020. A plasma sample from each HCW was evaluated using the Abbott Panbio™ COVID-19 IgG/IgM rapid test device, with confirmation of IgG-positive results by the Abbott ArchitectTM SARS-CoV-2 IgG assay. 545 participants, of whom 399 were antibody positive at enrolment, were followed up at 3 months. Results: The Panbio™ COVID-19 IgG/IgM rapid test device demonstrated a high concordance with laboratory tests. SARS-CoV-2 antibodies were detected in 506 participants (25.3%) at enrolment, with a higher prevalence in COVID-19 frontline (28.3%) than non-frontline (19.9%) staff. At follow-up, 274/399 antibody positive participants (68.7%) retained antibodies; 4/146 participants negative at enrolment (2.7%) had seroconverted. Non-white ethnicity, older age, hypertension and COVID-19 symptoms were independent predictors of higher antibody levels (OR 1.881, 2.422-3.034, 2.128, and 1.869 respectively), based on Architect™ index quartiles; participants in the first three categories also showed a greater antibody persistence at 3 months. Conclusion: The SARS-CoV-2 anti-nucleocapsid IgG positivity rate among healthcare staff was high, declining by 31.3% during the 3-month follow-up interval. Interestingly, the IgG-positive participants with certain risk factors for severe COVID-19 illness (older age, Black or Asian Ethnicity hypertension) demonstrated greater persistence over time when compared to the IgG-positive participants without these risk factors.

10.
Viruses ; 13(5)2021 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-33925087

RESUMEN

Hepatitis delta virus (HDV) infection causes the most severe form of viral hepatitis, but little is known about the molecular mechanisms involved. We have recently developed an HDV mouse model based on the delivery of HDV replication-competent genomes using adeno-associated vectors (AAV), which developed a liver pathology very similar to the human disease and allowed us to perform mechanistic studies. We have generated different AAV-HDV mutants to eliminate the expression of HDV antigens (HDAgs), and we have characterized them both in vitro and in vivo. We confirmed that S-HDAg is essential for HDV replication and cannot be replaced by L-HDAg or host cellular proteins, and that L-HDAg is essential to produce the HDV infectious particle and inhibits its replication. We have also found that lack of L-HDAg resulted in the increase of S-HDAg expression levels and the exacerbation of liver damage, which was associated with an increment in liver inflammation but did not require T cells. Interestingly, early expression of L-HDAg significantly ameliorated the liver damage induced by the mutant expressing only S-HDAg. In summary, the use of AAV-HDV represents a very attractive platform to interrogate in vivo the role of viral components in the HDV life cycle and to better understand the mechanism of HDV-induced liver pathology.


Asunto(s)
Dependovirus/genética , Vectores Genéticos/genética , Hepatitis D/virología , Virus de la Hepatitis Delta/fisiología , Replicación Viral , Animales , Línea Celular , Células Cultivadas , Citocinas/metabolismo , Modelos Animales de Enfermedad , Susceptibilidad a Enfermedades , Ingeniería Genética , Hepatitis D/patología , Humanos , Técnicas In Vitro , Hígado/metabolismo , Hígado/patología , Hígado/virología , Ratones , Mutación
11.
Front Immunol ; 12: 813300, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35095908

RESUMEN

Background: The presentation of SARS-CoV-2 infection varies from asymptomatic to severe COVID-19. Similarly, high variability in the presence, titre and duration of specific antibodies has been reported. While some host factors determining these differences, such as age and ethnicity have been identified, the underlying molecular mechanisms underpinning these differences remain poorly defined. Methods: We analysed serum and PBMC from 17 subjects with a previous PCR-confirmed SARS-CoV-2 infection and 10 unexposed volunteers following the first wave of the pandemic, in the UK. Anti-NP IgG and neutralising antibodies were measured, as well as a panel of infection and inflammation related cytokines. The virus-specific T cell response was determined by IFN-γ ELISPOT and flow cytometry after overnight incubation of PBMCs with pools of selected SARS-CoV-2 specific peptides. Results: Seven of 17 convalescent subjects had undetectable levels of anti-NP IgG, and a positive correlation was shown between anti-NP IgG levels and the titre of neutralising antibodies (IC50). In contrast, a discrepancy was noted between antibody levels and T cell IFN-γ production by ELISpot following stimulation with specific peptides. Among the analysed cytokines, ß-NGF and IL-1α levels were significantly different between anti-NP positive and negative subjects, and only ß-NGF significantly correlated with anti-NP positivity. Interestingly, CD4+ T cells of anti-NP negative subjects expressed lower amounts of the ß-NGF-specific receptor TrkA. Conclusions: Our results suggest that the ß-NGF/TrkA signalling pathway is associated with the production of anti-NP specific antibody in mild SARS-CoV-2 infection and the mechanistic regulation of this pathway in COVID-19 requires further investigation.


Asunto(s)
Anticuerpos Antiidiotipos/inmunología , COVID-19/inmunología , Inmunoglobulina G/inmunología , Factor de Crecimiento Nervioso/inmunología , Nucleoproteínas/inmunología , Receptor trkA/inmunología , Transducción de Señal/inmunología , Animales , Anticuerpos Antivirales/inmunología , Linfocitos T CD4-Positivos/inmunología , Línea Celular , Chlorocebus aethiops , Citocinas/inmunología , Humanos , Inflamación/inmunología , SARS-CoV-2/inmunología , Células Vero
13.
JHEP Rep ; 2(3): 100098, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32382723

RESUMEN

BACKGROUND & AIMS: HDV infection induces the most severe form of human viral hepatitis. However, the specific reasons for the severity of the disease remain unknown. Recently, we developed an HDV replication mouse model in which, for the first time, liver damage was detected. METHODS: HDV and HBV replication-competent genomes and HDV antigens were delivered to mouse hepatocytes using adeno-associated vectors (AAVs). Aminotransferase elevation, liver histopathology, and hepatocyte death were evaluated and the immune infiltrate was characterized. Liver transcriptomic analysis was performed. Mice deficient for different cellular and molecular components of the immune system, as well as depletion and inhibition studies, were employed to elucidate the causes of HDV-mediated liver damage. RESULTS: AAV-mediated HBV/HDV coinfection caused hepatocyte necrosis and apoptosis. Activated T lymphocytes, natural killer cells, and proinflammatory macrophages accounted for the majority of the inflammatory infiltrate. However, depletion studies and the use of different knockout mice indicated that neither T cells, natural killer cells nor macrophages were necessary for HDV-induced liver damage. Transcriptomic analysis revealed a strong activation of type I and II interferon (IFN) and tumor necrosis factor (TNF)-α pathways in HBV/HDV-coinfected mice. While the absence of IFN signaling had no effect, the use of a TNF-α antagonist resulted in a significant reduction of HDV-associated liver injury. Furthermore, hepatic expression of HDAg resulted in the induction of severe liver damage, which was T cell- and TNF-α-independent. CONCLUSIONS: Both host (TNF-α) and viral (HDV antigens) factors play a relevant role in HDV-induced liver damage. Importantly, pharmacological inhibition of TNF-α may offer an attractive strategy to aid control of HDV-induced acute liver damage. LAY SUMMARY: Chronic hepatitis delta constitutes the most severe form of viral hepatitis. There is limited data on the mechanism involved in hepatitis delta virus (HDV)-induced liver pathology. Our data indicate that a cytokine (TNF-α) and HDV antigens play a relevant role in HDV-induced liver damage.

15.
J Hepatol ; 67(4): 669-679, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28527664

RESUMEN

BACKGROUND & AIMS: Studying hepatitis delta virus (HDV) and developing new treatments is hampered by the limited availability of small animal models. Herein, a description of a robust mouse model of HDV infection that mimics several important characteristics of the human disease is presented. METHODS: HDV and hepatitis B virus (HBV) replication competent genomes were delivered to the mouse liver using adeno-associated viruses (AAV; AAV-HDV and AAV-HBV). Viral load, antigen expression and genomes were quantified at different time points after AAV injection. Furthermore, liver pathology, genome editing, and the activation of the innate immune response were evaluated. RESULTS: AAV-HDV infection initiated HDV replication in mouse hepatocytes. Genome editing was confirmed by the presence of small and large HDV antigens and sequencing. Viral replication was detected for 45days, even after the AAV-HDV vector had almost disappeared. In the presence of HBV, HDV infectious particles were detected in serum. Furthermore, as observed in patients, co-infection was associated with the reduction of HBV antigen expression and the onset of liver damage that included the alteration of genes involved in the development of liver pathologies. HDV replication induced a sustained type I interferon response, which was significantly reduced in immunodeficient mice and almost absent in mitochondrial antiviral signaling protein (MAVS)-deficient mice. CONCLUSION: The animal model described here reproduces important characteristics of human HDV infection and provides a valuable tool for characterizing the viral infection and for developing new treatments. Furthermore, MAVS was identified as a main player in HDV detection and adaptive immunity was found to be involved in the amplification of the innate immune response. Lay summary: Co-infection with hepatitis B and D virus (HBV and HDV, respectively) often causes a more severe disease condition than HBV alone. Gaining more insight into HDV and developing new treatments is hampered by limited availability of adequate immune competent small animal models and new ones are needed. Here, a mouse model of HDV infection is described, which mimics several important characteristics of the human disease, such as the initiation and maintenance of replication in murine hepatocytes, genome editing and, in the presence of HBV, generation of infectious particles. Lastly, the involvement of an adaptive immunity and the intracellular signaling molecule MAVS in mounting a strong and lasting innate response was shown. Thus, our model serves as a useful tool for the investigation of HDV biology and new treatments.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/inmunología , Hepatitis D/inmunología , Interferón beta/biosíntesis , Inmunidad Adaptativa , Proteínas Adaptadoras Transductoras de Señales/deficiencia , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Línea Celular , Coinfección/inmunología , Coinfección/patología , Coinfección/virología , Dependovirus/genética , Modelos Animales de Enfermedad , Genoma Viral , Hepatitis B/complicaciones , Hepatitis B/inmunología , Hepatitis B/virología , Antígenos de la Hepatitis B/metabolismo , Virus de la Hepatitis B/genética , Virus de la Hepatitis B/inmunología , Hepatitis D/complicaciones , Hepatitis D/virología , Virus de la Hepatitis Delta/genética , Virus de la Hepatitis Delta/inmunología , Virus de la Hepatitis Delta/fisiología , Antígenos de Hepatitis delta/metabolismo , Humanos , Inmunidad Innata , Hígado/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Modelos Inmunológicos , Transducción de Señal/inmunología , Replicación Viral
16.
Pathogens ; 4(1): 46-65, 2015 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-25686091

RESUMEN

Hepatitis delta virus (HDV) is a defective RNA virus that has an absolute requirement for a virus belonging to the hepadnaviridae family like hepatitis B virus (HBV) for its replication and formation of new virions. HDV infection is usually associated with a worsening of HBV-induced liver pathogenesis, which leads to more frequent cirrhosis, increased risk of hepatocellular carcinoma (HCC), and fulminant hepatitis. Importantly, no selective therapies are available for HDV infection. The mainstay of treatment for HDV infection is pegylated interferon alpha; however, response rates to this therapy are poor. A better knowledge of HDV-host cell interaction will help with the identification of novel therapeutic targets, which are urgently needed. Animal models like hepadnavirus-infected chimpanzees or the eastern woodchuck have been of great value for the characterization of HDV chronic infection. Recently, more practical animal models in which to perform a deeper study of host virus interactions and to evaluate new therapeutic strategies have been developed. Therefore, the main focus of this review is to discuss the current knowledge about HDV host interactions obtained from cell culture and animal models.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA