Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nature ; 622(7983): 471-475, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37758953

RESUMEN

Resonant oscillators with stable frequencies and large quality factors help us to keep track of time with high precision. Examples range from quartz crystal oscillators in wristwatches to atomic oscillators in atomic clocks, which are, at present, our most precise time measurement devices1. The search for more stable and convenient reference oscillators is continuing2-6. Nuclear oscillators are better than atomic oscillators because of their naturally higher quality factors and higher resilience against external perturbations7-9. One of the most promising cases is an ultra-narrow nuclear resonance transition in 45Sc between the ground state and the 12.4-keV isomeric state with a long lifetime of 0.47 s (ref. 10). The scientific potential of 45Sc was realized long ago, but applications require 45Sc resonant excitation, which in turn requires accelerator-driven, high-brightness X-ray sources11 that have become available only recently. Here we report on resonant X-ray excitation of the 45Sc isomeric state by irradiation of Sc-metal foil with 12.4-keV photon pulses from a state-of-the-art X-ray free-electron laser and subsequent detection of nuclear decay products. Simultaneously, the transition energy was determined as [Formula: see text] with an uncertainty that is two orders of magnitude smaller than the previously known values. These advancements enable the application of this isomer in extreme metrology, nuclear clock technology, ultra-high-precision spectroscopy and similar applications.

2.
J Synchrotron Radiat ; 28(Pt 1): 120-124, 2021 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-33399560

RESUMEN

This work presents the improvements in the design and testing of polarimeters based on channel-cut crystals for nuclear resonant scattering experiments at the 14.4 keV resonance of 57Fe. By using four asymmetric reflections at asymmetry angles of α1 = -28°, α2 = 28°, α3 = -28° and α4 = 28°, the degree of polarization purity could be improved to 2.2 × 10-9. For users, an advanced polarimeter without beam offset is now available at beamline P01 of the storage ring PETRA III.

3.
Nanomaterials (Basel) ; 11(1)2020 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-33375116

RESUMEN

The generation of high order harmonics from femtosecond mid-IR laser pulses in ZnO has shown great potential to reveal new insight into the ultrafast electron dynamics on a few femtosecond timescale. In this work we report on the experimental investigation of photoluminescence and high-order harmonic generation (HHG) in a ZnO single crystal and polycrystalline thin film irradiated with intense femtosecond mid-IR laser pulses. The ellipticity dependence of the HHG process is experimentally studied up to the 17th harmonic order for various driving laser wavelengths in the spectral range 3-4 µm. Interband Zener tunneling is found to exhibit a significant excitation efficiency drop for circularly polarized strong-field pump pulses. For higher harmonics with energies larger than the bandgap, the measured ellipticity dependence can be quantitatively described by numerical simulations based on the density matrix equations. The ellipticity dependence of the below and above ZnO band gap harmonics as a function of the laser wavelength provides an efficient method for distinguishing the dominant HHG mechanism for different harmonic orders.

4.
Phys Rev Lett ; 122(9): 095001, 2019 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-30932543

RESUMEN

We present the experimental determination of the ion temperature in a neon-puff Z pinch. The diagnostic method is based on the effect of ion coupling on the Stark line shapes. It was found, in a profoundly explicit way, that at stagnation the ion thermal energy is small compared to the imploding-plasma kinetic energy, where most of the latter is converted to hydromotion. The method here described can be applied to other highly nonuniform and transient high-energy-density plasmas.

5.
Spectrochim Acta A Mol Biomol Spectrosc ; 206: 224-231, 2019 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-30119002

RESUMEN

We present the first complete dispersion analysis of the organic ethylenediamine-d-tartrate (EDDt) in single crystal form in the spectral range of 5000-100 cm-1. The obtained oscillator parameters were used to generate the polarized and the cross-polarized spectra of randomly oriented polycrystalline EDDt. The comparison of the generated with the experimental spectra confirms the value of obtained oscillator parameters and dielectric tensor function.

6.
Sci Rep ; 7: 43114, 2017 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-28225031

RESUMEN

Reciprocity is when wave or quantum scattering satisfies a symmetry property, connecting a scattering process with the reversed one. While reciprocity involves the interchange of source and detector, it is fundamentally different from rotational invariance, and is a generalization of time reversal invariance, occurring in absorptive media as well. Due to its presence at diverse areas of physics, it admits a wide variety of applications. For polarization dependent scatterings, reciprocity is often violated, but violation in the phase of the scattering amplitude is much harder to experimentally observe than violation in magnitude. Enabled by the advantageous properties of nuclear resonance scattering of synchrotron radiation, we have measured maximal, i.e., 180-degree, reciprocity violation in the phase. For accessing phase information, we introduced a new version of stroboscopic detection. The scattering setting was devised based on a generalized reciprocity theorem that opens the way to construct new types of reciprocity related devices.

7.
J Synchrotron Radiat ; 22(5): 1151-4, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26289265

RESUMEN

The spectrum of the undulator radiation of beamline P01 at Petra III has been measured after passing a multiple reflection channel-cut polarimeter. Odd and even harmonics up to the 15th order, as well as Compton peaks which were produced by the high harmonics in the spectrum, could been measured. These additional contributions can have a tremendous influence on the performance of the polarimeter and have to be taken into account for further polarimeter designs.

8.
Phys Rev Lett ; 114(20): 203601, 2015 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-26047228

RESUMEN

Group velocity control is demonstrated for x-ray photons of 14.4 keV energy via a direct measurement of the temporal delay imposed on spectrally narrow x-ray pulses. Subluminal light propagation is achieved by inducing a steep positive linear dispersion in the optical response of 57Fe Mössbauer nuclei embedded in a thin film planar x-ray cavity. The direct detection of the temporal pulse delay is enabled by generating frequency-tunable spectrally narrow x-ray pulses from broadband pulsed synchrotron radiation. Our theoretical model is in good agreement with the experimental data.

9.
Rev Sci Instrum ; 84(9): 095111, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24089870

RESUMEN

We present a Michelson interferometer for 13.5 nm soft x-ray radiation. It is characterized in a proof-of-principle experiment using synchrotron radiation, where the temporal coherence is measured to be 13 fs. The curvature of the thin-film beam splitter membrane is derived from the observed fringe pattern. The applicability of this Michelson interferometer at intense free-electron lasers is investigated, particularly with respect to radiation damage. This study highlights the potential role of such Michelson interferometers in solid density plasma investigations using, for instance, extreme soft x-ray free-electron lasers. A setup using the Michelson interferometer for pseudo-Nomarski-interferometry is proposed.

10.
Nat Commun ; 4: 2421, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24026068

RESUMEN

Laser-plasma particle accelerators could provide more compact sources of high-energy radiation than conventional accelerators. Moreover, because they deliver radiation in femtosecond pulses, they could improve the time resolution of X-ray absorption techniques. Here we show that we can measure and control the polarization of ultra-short, broad-band keV photon pulses emitted from a laser-plasma-based betatron source. The electron trajectories and hence the polarization of the emitted X-rays are experimentally controlled by the pulse-front tilt of the driving laser pulses. Particle-in-cell simulations show that an asymmetric plasma wave can be driven by a tilted pulse front and a non-symmetric intensity distribution of the focal spot. Both lead to a notable off-axis electron injection followed by collective electron-betatron oscillations. We expect that our method for an all-optical steering is not only useful for plasma-based X-ray sources but also has significance for future laser-based particle accelerators.

11.
Phys Rev Lett ; 111(7): 073601, 2013 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-23992063

RESUMEN

The control of light-matter interaction at the quantum level usually requires coherent laser fields. But already an exchange of virtual photons with the electromagnetic vacuum field alone can lead to quantum coherences, which subsequently suppress spontaneous emission. We demonstrate such spontaneously generated coherences (SGC) in a large ensemble of nuclei operating in the x-ray regime, resonantly coupled to a common cavity environment. The observed SGC originates from two fundamentally different mechanisms related to cooperative emission and magnetically controlled anisotropy of the cavity vacuum. This approach opens new perspectives for quantum control, quantum state engineering and simulation of quantum many-body physics in an essentially decoherence-free setting.

12.
Opt Lett ; 30(13): 1737-9, 2005 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-16075555

RESUMEN

We demonstrate a subpicosecond 1 kHz femtosecond x-ray source with a well-accessible quasi-point size (10 microm diameter) providing Cu K(alpha) emission with a maximum flux of 6.8 x 10(10) photons/s for continuous operation of 10 h. A new geometry that essentially facilitates the adjustment and diminishes the temporal jitter between the x-ray probe and the laser pump pulse is implemented for time-resolved diffraction experiments.

13.
Nature ; 422(6929): 287-9, 2003 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-12646915

RESUMEN

The study of phase-transition dynamics in solids beyond a time-averaged kinetic description requires direct measurement of the changes in the atomic configuration along the physical pathways leading to the new phase. The timescale of interest is in the range 10(-14) to 10(-12) s. Until recently, only optical techniques were capable of providing adequate time resolution, albeit with indirect sensitivity to structural arrangement. Ultrafast laser-induced changes of long-range order have recently been directly established for some materials using time-resolved X-ray diffraction. However, the measurement of the atomic displacements within the unit cell, as well as their relationship with the stability limit of a structural phase, has to date remained obscure. Here we report time-resolved X-ray diffraction measurements of the coherent atomic displacement of the lattice atoms in photoexcited bismuth close to a phase transition. Excitation of large-amplitude coherent optical phonons gives rise to a periodic modulation of the X-ray diffraction efficiency. Stronger excitation corresponding to atomic displacements exceeding 10 per cent of the nearest-neighbour distance-near the Lindemann limit-leads to a subsequent loss of long-range order, which is most probably due to melting of the material.

14.
Phys Rev E Stat Nonlin Soft Matter Phys ; 66(1 Pt 2): 016402, 2002 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-12241485

RESUMEN

A population kinetics code was developed to analyze K alpha emission from partially ionized chlorine atoms in hydrocarbon plasmas. Atomic processes are solved under collisional-radiative equilibrium for two-temperature plasmas. It is shown that the fast electrons dominantly contribute to ionize the K-shell bound electrons (i.e., inner-shell ionization) and the cold electrons to the outer-shell bound ones. Ratios of K alpha lines of partially ionized atoms are presented as a function of cold-electron temperature. The model was validated by observation of the K alpha lines from a chlorinated plastic target irradiated with 1 TW Ti:sapphire laser pulses at 1.5 x 10(17) W/cm(2), inferring a plasma temperature of about 100 eV on the target surface.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...