Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Biomol Struct Dyn ; 41(13): 6450-6458, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-35930324

RESUMEN

Methionyl-tRNA synthetase (MetRS) is an attractive molecular target for antibiotic discovery. Recently, we have developed several classes of small-molecular inhibitors of Mycobacterium tuberculosis MetRS possessing antibacterial activity. In this article, we performed in silico site-directed mutagenesis of aminoacyl-adenylate binding site of M. tuberculosis MetRS in order to identify crucial amino acid residues for substrate interaction. The umbrella sampling algorithm was used to calculate the binding free energy (ΔG) of these mutated forms with methionyl-adenylate analogue. According to the obtained results, the replacement of Glu24 and Leu293 by alanine leads to the most significant decrease in the binding free energy (ΔG) for adenylate analogue with methionyl-tRNA synthetase indicating increasing of the affinity, which in turn causes the loss of compounds inhibitory activity. Therefore, these amino acid residues can be proposed for further experimental site-directed mutagenesis to confirm binding mode of inhibitors and should be taken into account during chemical optimization to overcome resistance due to mutations.Communicated by Ramaswamy H. Sarma.


Asunto(s)
Metionina-ARNt Ligasa , Mycobacterium tuberculosis , Metionina-ARNt Ligasa/genética , Metionina-ARNt Ligasa/química , Metionina-ARNt Ligasa/metabolismo , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/metabolismo , Sitios de Unión , Mutagénesis Sitio-Dirigida
2.
Future Med Chem ; 14(17): 1223-1237, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35876255

RESUMEN

Background: The most serious challenge in the treatment of tuberculosis is the multidrug resistance of Mycobacterium tuberculosis to existing antibiotics. As a strategy to overcome resistance we used a multitarget drug design approach. The purpose of the work was to discover dual-targeted inhibitors of mycobacterial LeuRS and MetRS with machine learning. Methods: The artificial neural networks were built using module nnet from R 3.6.1. The inhibitory activity of compounds toward LeuRS and MetRS was investigated in aminoacylation assays. Results: Using a machine-learning approach, we identified dual-targeted inhibitors of LeuRS and MetRS among 2-(quinolin-2-ylsulfanyl)-acetamide derivatives. The most active compound inhibits MetRS and LeuRS with IC50 values of 33 µm and 23.9 µm, respectively. Conclusion: 2-(Quinolin-2-ylsulfanyl)-acetamide scaffold can be useful for further research.


Asunto(s)
Aminoacil-ARNt Sintetasas , Mycobacterium tuberculosis , Tuberculosis , Acetamidas/uso terapéutico , Aminoacil-ARNt Sintetasas/uso terapéutico , Humanos , Aprendizaje Automático , Tuberculosis/tratamiento farmacológico , Tuberculosis/microbiología
3.
ACS Omega ; 6(38): 24910-24918, 2021 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-34604672

RESUMEN

Staphylococcus aureus is one of the most dangerous nosocomial pathogens which cause a wide variety of hospital-acquired infectious diseases. S. aureus is considered as a superbug due to the development of multidrug resistance to all current therapeutic regimens. Therefore, the discovery of antibiotics with novel mechanisms of action to combat staphylococcal infections is of high priority for modern medicinal chemistry. Nowadays, aminoacyl-tRNA synthetases are considered as promising molecular targets for antibiotic development. In the present study, we used for the first time S. aureus threonyl-tRNA synthetase (ThrRS) as a molecular target. Recombinant S. aureus ThrRS was obtained in the soluble form in a sufficient amount for inhibitor screening assay. Using the molecular docking approach, we selected 180 compounds for investigation of inhibitory activity toward ThrRS. Among the tested compounds, we identified five inhibitors from different chemical classes decreasing the activity of ThrRS by more than 70% at a concentration of 100 µM. The most active compound 2,4-dibromo-6-{[4-(4-nitro-phenyl)-thiazol-2-yl]-hydrazonomethyl}-phenol has an IC50 value of 56.5 ± 3.5 µM. These compounds are not cytotoxic toward eukaryotic cells HEK293 (EC50 > 100 µM) and can be useful for further optimization and biological research.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...