Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Mutat Res Rev Mutat Res ; 771: 85-98, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28342454

RESUMEN

The present review describes available evidence about the fate of micronuclei and micronucleated cells. Micronuclei are small, extranuclear chromatin bodies surrounded by a nuclear envelope. The mechanisms underlying the formation of micronuclei are well understood but not much is known about the potential fate of micronuclei and micronucleated cells. Many studies with different experimental approaches addressed the various aspects of the post-mitotic fate of micronuclei and micronucleated cells. These studies are reviewed here considering four basic possibilities for potential fates of micronuclei: degradation of the micronucleus or the micronucleated cell, reincorporation into the main nucleus, extrusion from the cell, and persistence in the cytoplasm. Two additional fates need to be considered: premature chromosome condensation/chromothripsis and the elimination of micronucleated cells by apoptosis, yielding six potential fates for micronuclei and/or micronucleated cells. The available data is still limited, but it can be concluded that degradation and extrusion of micronuclei might occur in rare cases under specific conditions, reincorporation during the next mitosis occurs more frequently, and the majority of the micronuclei persist without alteration at least until the next mitosis, possibly much longer. Overall, the consequences of micronucleus formation on the cellular level are still far from clear, but they should be investigated further because micronucleus formation may contribute to the initial and later steps of malignant cell transformation, by causing gain or loss of genetic material in the daughter cells and by the possibility of massive chromosome rearrangement in chromosomes entrapped within a micronucleus by the mechanisms of chromothripsis and chromoanagenesis.


Asunto(s)
Micronúcleo Germinal , Animales , Línea Celular , Humanos
2.
Toxicol Sci ; 97(2): 237-40, 2007 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-17303579

RESUMEN

Based on new scientific developments and experience of the regulation of chemical compounds, a working group of the Gesellschaft fuer Umweltmutationsforschung (GUM), a German-speaking section of the European Environmental Mutagen Society, proposes a simple and straightforward approach to genotoxicity testing. This strategy is divided into basic testing (stage I) and follow-up testing (stage II). Stage I consists of a bacterial gene mutation test plus an in vitro micronucleus test, therewith covering all mutagenicity endpoints. Stage II testing is in general required only if relevant positive results occur in stage I testing and will usually be in vivo. However, an isolated positive bacterial gene mutation test in stage I can be followed up with a gene mutation assay in mammalian cells. If this assay turns out negative and there are no compound-specific reasons for concern, in vivo follow-up testing may not be required. In those cases where in vivo testing is indicated, a single study combining the analysis of micronuclei in bone marrow with the comet assay in appropriately selected tissues is suggested. Negative results for both end points in relevant tissues will generally provide sufficient evidence to conclude that the test compound is nongenotoxic in vivo. Compounds which were recognized as in vivo somatic cell mutagens/genotoxicants in this hazard identification step will need further testing. In the absence of additional data, such compounds will have to be assumed to be potential genotoxic carcinogens and potential germ cell mutagens.


Asunto(s)
Pruebas de Mutagenicidad/normas , Mutágenos/toxicidad , Animales , Bacterias/efectos de los fármacos , Bacterias/genética , Evaluación Preclínica de Medicamentos , Humanos , Pruebas de Micronúcleos , Pruebas de Mutagenicidad/métodos
3.
Hum Exp Toxicol ; 23(6): 307-16, 2004 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-15301157

RESUMEN

Metabolism in fresh and cryopreserved (CP) rat, dog and monkey hepatocyte suspensions and cultures was measured using midazolam (CYP3A), tolbutamide (CYP2C), dextromethorphan (CYP2D) and p-nitrophenol (glucuronosyl S-transferases (UGT), sulphotransferases (ST)). CYP3A, CYP2C9, CYP2D6, UGT and ST enzyme functions in fresh and CP rat, dog and monkey hepatocyte suspensions were retained - CP rat hepatocytes lost some CYP2C activity but this was restored by adding NADPH or by placing the cells in culture, suggesting that the enzyme was still functional. Phase 2 activities were equivalent in fresh and CP hepatocyte suspensions. In some cases, incubation conditions increased the rate of metabolism, possibly reflecting de novo cofactor synthesis. However, this effect was substrate and species dependent and was not always the same in fresh and CP cells. CYP3A, CYP2C, CYP2D, UGT and ST activities at 24 hours of culture of rat and monkey hepatocytes were not compromised by cryopreservation. CYP3A, CYP2D but not CYP2C were lower in 24-hour cultures of CP dog hepatocytes than in fresh cells. Despite being lower than fresh cells, UGT activity in dog CP hepatocytes did not decrease from 0 to 24 hours of culture. Species-specific metabolism of p-nitrophenol could be demonstrated in both CP cell suspensions and cultures. In conclusion, these data suggest that the enzyme characteristics of fresh and CP hepatocytes from each species and under specific incubation conditions should be considered when carrying out metabolism studies of new compounds.


Asunto(s)
Biotransformación , Criopreservación/métodos , Enzimas/metabolismo , Hepatocitos/enzimología , Macaca fascicularis , Preparaciones Farmacéuticas/metabolismo , Animales , Células Cultivadas , Sistema Enzimático del Citocromo P-450/análisis , Sistema Enzimático del Citocromo P-450/metabolismo , Perros , Glucuronosiltransferasa/metabolismo , Hepatocitos/citología , Masculino , Ratas , Ratas Sprague-Dawley , Sulfotransferasas/metabolismo
4.
Mutat Res ; 566(1): 65-91, 2004 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-14706512

RESUMEN

In recent years, assessing the photogenotoxic potential of a compound became an issue for certain drugs and cosmetical products. Therefore, existing methods performed according to international guidelines (e.g. OECD guidelines) were adapted to the use of concurrent UV-visible (UV-Vis) light irradiation for the assessment of photomutagenicity/photogenotoxicity. In this review, photobiological bases of the processes occurring in the cell after irradiation with UV- and/or visible (vis)-light as well as a compilation of testing methods is presented. Methods comprise cell free investigations on naked DNA and in vitro methods, such as the photo-Ames test, the photo-HPRT/photo-mouse lymphoma assay (MLA), the photo-micronucleus test (MNT), the photo-chromosomal aberration test (CA) and the photo-Comet assay. A compilation of the currently available international literature of compounds tested on photogenotoxicity is given for each method. The state of the art of photogenotoxicity testing as well as the rational for testing are outlined in relation to the recommendations reached in expert working groups at different international meetings and to regulatory guidance papers. Finally, photogenotoxicity testing as predictor of photocarcinogenicity and in the light of risk assessment is discussed.


Asunto(s)
ADN/efectos de la radiación , Pruebas de Mutagenicidad/métodos , Animales , Aberraciones Cromosómicas , Ensayo Cometa , Daño del ADN , Reparación del ADN , Humanos , Fotoquímica , Medición de Riesgo , Transducción de Señal , Rayos Ultravioleta
5.
Drug Metab Rev ; 35(2-3): 145-213, 2003.
Artículo en Inglés | MEDLINE | ID: mdl-12959414

RESUMEN

Primary hepatocytes represent a well-accepted in vitro cell culture system for studies of drug metabolism, enzyme induction, transplantation, viral hepatitis, and hepatocyte regeneration. Recently, a multicentric research program has been initiated to optimize and standardize new in vitro systems with hepatocytes. In this article, we discuss five of these in vitro systems: hepatocytes in suspension, perifusion culture systems, liver slices, co-culture systems of hepatocytes with intestinal bacteria, and 96-well plate bioreactors. From a technical point of view, freshly isolated or cryopreserved hepatocytes in suspension represent a readily available and easy-to-handle in vitro system that can be used to characterize the metabolism of test substances. Hepatocytes in suspension correctly predict interspecies differences in drug metabolism, which is demonstrated with pantoprazole and propafenone. A limitation of the hepatocyte suspensions is the length of the incubation period, which should not exceed 4hr. This incubation period is sufficiently long to determine the metabolic stability and to allow identification of the main metabolites of a test substance, but may be too short to allow generation of some minor, particularly phase II metabolites, that contribute less than 3% to total metabolism. To achieve longer incubation periods, hepatocyte culture systems or bioreactors are used. In this research program, two bioreactor systems have been optimized: the perifusion culture system and 96-well plate bioreactors. The perifusion culture system consists of collagen-coated slides allowing the continuous superfusion of a hepatocyte monolayer with culture medium as well as establishment of a constant atmosphere of 13% oxygen, 82% nitrogen, and 5% CO2. This system is stable for at least 2 weeks and guarantees a remarkable sensitivity to enzyme induction, even if weak inducers are tested. A particular advantage of this systemis that the same bioreactor can be perfused with different concentrations of a test substance in a sequential manner. The 96-well plate bioreactor runs 96 modules in parallel for pharmacokinetic testing under aerobic culture conditions. This system combines the advantages of a three-dimensional culture system in collagen gel, controlled oxygen supply, and constant culture medium conditions, with the possibility of high throughput and automatization. A newly developed co-culture system of hepatocytes with intestinal bacteria offers the possibility to study the metabolic interaction between liver and intestinal microflora. It consists of two chambers separated by a permeable polycarbonate membrane, where hepatocytes are cultured under aerobic and intestinal bacteria in anaerobic conditions. Test substances are added to the aerobic side to allow their initial metabolism by the hepatocytes, followed by the metabolism by intestinal bacteria at the anaerobic side. Precision-cut slices represent an alternative to isolated hepatocytes and have been used fo the investigation of hepatic metabolism, hepatotoxicity, and enzyme induction. A specific advantage of liver slices is the possibility to study toxic effects on hepatocytes that are mediated or modified by nonparenchymal cells (e.g., by cytokine release from Kupffer cells) because the physiological liver microarchitecture is maintained in cultured slices. For all these in vitro systems, a prevalidation has been performed using standard assays for phase I and II enzymes. Representative results with test substances and recommendations for application of these in vitro systems, as well as standard operation procedures are given.


Asunto(s)
Hepatocitos/citología , Hepatocitos/metabolismo , Proyectos de Investigación/normas , Tecnología Farmacéutica/normas , Animales , Humanos , Reproducibilidad de los Resultados , Tecnología Farmacéutica/instrumentación , Tecnología Farmacéutica/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...