Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Circulation ; 137(20): 2152-2165, 2018 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-29348261

RESUMEN

BACKGROUND: Defining conserved molecular pathways in animal models of successful cardiac regeneration could yield insight into why adult mammals have inadequate cardiac regeneration after injury. Insight into the transcriptomic landscape of early cardiac regeneration from model organisms will shed light on evolutionarily conserved pathways in successful cardiac regeneration. METHODS: Here we describe a cross-species transcriptomic screen in 3 model organisms for cardiac regeneration: axolotl, neonatal mice, and zebrafish. Apical resection to remove ≈10% to 20% of ventricular mass was carried out in these model organisms. RNA-sequencing analysis was performed on the hearts harvested at 3 time points: 12, 24, and 48 hours after resection. Sham surgery was used as internal control. RESULTS: Genes associated with inflammatory processes were found to be upregulated in a conserved manner. Complement receptors (activated by complement components, part of the innate immune system) were found to be highly upregulated in all 3 species. This approach revealed induction of gene expression for complement 5a receptor 1 in the regenerating hearts of zebrafish, axolotls, and mice. Inhibition of complement 5a receptor 1 significantly attenuated the cardiomyocyte proliferative response to heart injury in all 3 species. Furthermore, after left ventricular apical resection, the cardiomyocyte proliferative response was diminished in mice with genetic deletion of complement 5a receptor 1. CONCLUSIONS: These data reveal that activation of complement 5a receptor 1 mediates an evolutionarily conserved response that promotes cardiomyocyte proliferation after cardiac injury and identify complement pathway activation as a common pathway of successful heart regeneration.


Asunto(s)
Evolución Molecular , Corazón/fisiología , Receptor de Anafilatoxina C5a/metabolismo , Regeneración/fisiología , Ambystoma mexicanum , Animales , Animales Recién Nacidos , Proliferación Celular , Perfilación de la Expresión Génica , Ontología de Genes , Ratones , Miocardio/patología , Miocitos Cardíacos/citología , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Péptidos Cíclicos/farmacología , ARN/química , ARN/aislamiento & purificación , ARN/metabolismo , Receptor de Anafilatoxina C5a/antagonistas & inhibidores , Receptor de Anafilatoxina C5a/genética , Análisis de Secuencia de ARN , Troponina T/análisis , Pez Cebra
2.
Dev Cell ; 37(2): 127-35, 2016 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-27093082

RESUMEN

Anatomical proportions are robustly maintained in individuals that vary enormously in size, both within a species and between members of related taxa. However, the mechanisms underlying scaling are still poorly understood. We have examined this phenomenon in the context of the patterning of the ventral neural tube in response to a gradient of the morphogen Sonic hedgehog (SHH) in the chick and zebra finch, two species that differ in size during the time of neural tube patterning. We find that scaling is achieved, at least in part, by altering the sensitivity of the target cells to SHH and appears to be achieved by modulating the ratio of the repressive and activating transcriptional regulators, GLI2 and GLI3. This mechanism contrasts with previous experimental and theoretical analyses of morphogenic scaling that have focused on compensatory changes in the morphogen gradient itself.


Asunto(s)
Tipificación del Cuerpo/fisiología , Regulación del Desarrollo de la Expresión Génica/fisiología , Proteínas Hedgehog/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Tubo Neural/crecimiento & desarrollo , Neuronas/metabolismo , Animales , Pollos , Desarrollo Embrionario/fisiología , Inducción Embrionaria/fisiología , Médula Espinal/crecimiento & desarrollo , Transactivadores/metabolismo , Factores de Transcripción/metabolismo , Vertebrados/crecimiento & desarrollo
3.
Dev Cell ; 36(4): 362-74, 2016 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-26906733

RESUMEN

Adult humans fail to regenerate their hearts following injury, and this failure to regenerate myocardium is a leading cause of heart failure and death worldwide. Although all adult mammals appear to lack significant cardiac regeneration potential, some vertebrates can regenerate myocardium throughout life. In addition, new studies indicate that mammals have cardiac regeneration potential during development and very soon after birth. The mechanisms of heart regeneration among model organisms, including neonatal mice, appear remarkably similar. Orchestrated waves of inflammation, matrix deposition and remodeling, and cardiomyocyte proliferation are commonly seen in heart regeneration models. Understanding why adult mammals develop extensive scarring instead of regeneration is a crucial goal for regenerative biology.


Asunto(s)
Proliferación Celular/fisiología , Corazón/crecimiento & desarrollo , Miocardio/citología , Miocitos Cardíacos/citología , Regeneración/fisiología , Animales , Humanos , Mamíferos
4.
Circ Res ; 118(1): 29-37, 2016 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-26489925

RESUMEN

RATIONALE: Growth differentiation factor 11 (GDF11) and GDF8 are members of the transforming growth factor-ß superfamily sharing 89% protein sequence homology. We have previously shown that circulating GDF11 levels decrease with age in mice. However, a recent study by Egerman et al reported that GDF11/8 levels increase with age in mouse serum. OBJECTIVE: Here, we clarify the direction of change of circulating GDF11/8 levels with age and investigate the effects of GDF11 administration on the murine heart. METHODS AND RESULTS: We validated our previous finding that circulating levels of GDF11/8 decline with age in mice, rats, horses, and sheep. Furthermore, we showed by Western analysis that the apparent age-dependent increase in GDF11 levels, as reported by Egerman et al, is attributable to cross-reactivity of the anti-GDF11 antibody with immunoglobulin, which is known to increase with age. GDF11 administration in mice rapidly activated SMAD2 and SMAD3 signaling in myocardium in vivo and decreased cardiac mass in both young (2-month-old) and old (22-month-old) mice in a dose-dependent manner after only 9 days. CONCLUSIONS: Our study confirms an age-dependent decline in serum GDF11/8 levels in multiple mammalian species and that exogenous GDF11 rapidly activates SMAD signaling and reduces cardiomyocyte size. Unraveling the molecular basis for the age-dependent decline in GDF11/8 could yield insight into age-dependent cardiac pathologies.


Asunto(s)
Envejecimiento/sangre , Proteínas Morfogenéticas Óseas/sangre , Factores de Diferenciación de Crecimiento/sangre , Miostatina/sangre , Animales , Biomarcadores/sangre , Caballos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratas , Ovinos
5.
Cell ; 160(1-2): 269-84, 2015 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-25594183

RESUMEN

The stem cells that maintain and repair the postnatal skeleton remain undefined. One model suggests that perisinusoidal mesenchymal stem cells (MSCs) give rise to osteoblasts, chondrocytes, marrow stromal cells, and adipocytes, although the existence of these cells has not been proven through fate-mapping experiments. We demonstrate here that expression of the bone morphogenetic protein (BMP) antagonist gremlin 1 defines a population of osteochondroreticular (OCR) stem cells in the bone marrow. OCR stem cells self-renew and generate osteoblasts, chondrocytes, and reticular marrow stromal cells, but not adipocytes. OCR stem cells are concentrated within the metaphysis of long bones not in the perisinusoidal space and are needed for bone development, bone remodeling, and fracture repair. Grem1 expression also identifies intestinal reticular stem cells (iRSCs) that are cells of origin for the periepithelial intestinal mesenchymal sheath. Grem1 expression identifies distinct connective tissue stem cells in both the bone (OCR stem cells) and the intestine (iRSCs).


Asunto(s)
Huesos/citología , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Intestino Delgado/citología , Células Madre Mesenquimatosas/citología , Animales , Cartílago/metabolismo , Intestino Delgado/metabolismo , Células Madre Mesenquimatosas/metabolismo , Ratones , Ratones Endogámicos C57BL
6.
Nature ; 511(7507): 41-5, 2014 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-24990742

RESUMEN

A reduction in the number of digits has evolved many times in tetrapods, particularly in cursorial mammals that travel over deserts and plains, yet the underlying developmental mechanisms have remained elusive. Here we show that digit loss can occur both during early limb patterning and at later post-patterning stages of chondrogenesis. In the 'odd-toed' jerboa (Dipus sagitta) and horse and the 'even-toed' camel, extensive cell death sculpts the tissue around the remaining toes. In contrast, digit loss in the pig is orchestrated by earlier limb patterning mechanisms including downregulation of Ptch1 expression but no increase in cell death. Together these data demonstrate remarkable plasticity in the mechanisms of vertebrate limb evolution and shed light on the complexity of morphological convergence, particularly within the artiodactyl lineage.


Asunto(s)
Evolución Biológica , Tipificación del Cuerpo , Condrogénesis , Extremidades/anatomía & histología , Extremidades/embriología , Mamíferos/anatomía & histología , Mamíferos/embriología , Animales , Tipificación del Cuerpo/genética , Camelus/anatomía & histología , Camelus/embriología , Muerte Celular , Condrogénesis/genética , Factor 8 de Crecimiento de Fibroblastos/genética , Regulación del Desarrollo de la Expresión Génica , Proteínas Hedgehog/genética , Proteínas de Homeodominio/genética , Caballos/anatomía & histología , Caballos/embriología , Mamíferos/genética , Ratones , Proteínas Oncogénicas/genética , Receptores Patched , Receptor Patched-1 , Filogenia , Receptores de Superficie Celular/genética , Roedores/anatomía & histología , Roedores/embriología , Porcinos/anatomía & histología , Porcinos/embriología , Transactivadores/genética , Proteína con Dedos de Zinc GLI1
7.
Curr Biol ; 19(23): 1979-87, 2009 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-19962315

RESUMEN

BACKGROUND: Actin polymerization by Arp2/3 complex must be tightly regulated to promote clathrin-mediated endocytosis. Although many Arp2/3 complex activators have been identified, mechanisms for its negative regulation have remained more elusive. To address this, we analyzed the yeast arp2-7 allele, which is biochemically unique in causing unregulated actin assembly in vitro in the absence of Arp2/3 activators. RESULTS: We examined endocytosis in arp2-7 mutants by live-cell imaging of Sla1-GFP, a coat marker, and Abp1-RFP, which marks the later actin phase of endocytosis. Sla1-GFP and Abp1-RFP lifetimes were accelerated in arp2-7 mutants, which is opposite to actin nucleation-impaired arp2 alleles or deletions of Arp2/3 activators. We performed a screen for multicopy suppressors of arp2-7 and identified SYP1, an FCHO1 homolog, which contains F-BAR and AP-2micro homology domains. Overexpression of SYP1 in arp2-7 cells slowed Sla1-GFP lifetimes closer to wild-type cells. Further, purified Syp1 directly inhibited Las17/WASp stimulation of Arp2/3 complex-mediated actin assembly in vitro. This activity was mapped to a fragment of Syp1 located between its F-BAR and AP-2micro homology domains and depends on sequences in Las17/WASp outside of the VCA domain. CONCLUSIONS: Together, these data identify Syp1 as a novel negative regulator of WASp-Arp2/3 complex that helps choreograph the precise timing of actin assembly during endocytosis.


Asunto(s)
Complejo 2-3 Proteico Relacionado con la Actina/metabolismo , Proteínas Portadoras/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Familia de Proteínas del Síndrome de Wiskott-Aldrich/metabolismo , Actinas/metabolismo , Alelos , Proteínas Portadoras/genética , Endocitosis , Regulación Fúngica de la Expresión Génica/fisiología , Mutación , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/ultraestructura , Proteínas de Saccharomyces cerevisiae/genética , Proteína del Síndrome de Wiskott-Aldrich/genética , Proteína del Síndrome de Wiskott-Aldrich/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...