Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Dalton Trans ; 52(47): 17767-17775, 2023 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-37981810

RESUMEN

Herein we report the synthesis, isolation and polymerisation activity of two new zinc compounds based on a 2,6-diisopropylphenyl (Dipp) ß-diiminate (NacNac) ligand framework with zinc also ligated by an amidate (2-pyridonate or 6-methyl-2-pyridonate) unit. The compounds crystallised as either monomeric (6-Me-2-pyridonate derivative) or dimeric (2-pyridonate) species, although both were found to be monomeric in solution via1H DOSY NMR spectroscopy, which was supported by DFT calculations. These observations suggest that both complexes initiate ring-opening polymerisation (ROP) through a single-site monometallic mechanism. High molecular weight poly ε-caprolactone (PCL) was achieved via exogenous initiator-free ROP conditions with both catalysts. An increase in the 2-pyridonate initiator steric bulk (6-Me- vs. 6-H-) resulted in an improved catalytic activity, facilitating complete monomer conversion within 1 h at 60 °C. Pyridonate end-groups were observed by MALDI-ToF mass spectrometry, contrasting with previous observations for DippNacNac-Zn acetate complexes (where no acetate end groups are observed), instead this more closely resembles the reactivity of DippNacNac-Zn alkoxide complexes in ROP (where RO end groups are observed). Additional major signals in the MALDI-ToF spectra were consistent with cyclic PCL species, which are attributed to back-biting ring-closing termination steps occuring in a process facilitated by the pyridonate unit being an effective leaving group. To the best of our knowledge, these complexes represent the first examples of pyridonate, and indeed amidate, initated ROP.

3.
Org Lett ; 25(31): 5880-5884, 2023 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-37498083

RESUMEN

Bromo-functionalized B1-polycyclic aromatic hydrocarbons (PAHs) with LUMOs of less than -3.0 eV were synthesized and used in cross-couplings to form donor-acceptor materials. These materials spanned a range of S1 energies, with a number showing thermally activated delayed fluorescence and significant emission in the near-infrared region of the spectrum. These B1-PAHs represent a useful family of acceptors that can be readily synthesized and functionalized.

4.
Chem Sci ; 14(14): 3865-3872, 2023 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-37035693

RESUMEN

Amide directed C-H borylation using ≥two equiv. of BBr3 forms borenium cations containing a R2N(R')C[double bond, length as m-dash]O→B(Ar)Br unit which has significant Lewis acidity at the carbonyl carbon. This enables reduction of the amide unit to an amine using hydrosilanes. This approach can be applied sequentially in a one-pot electrophilic borylation-reduction process, which for phenyl-acetylamides generates ortho borylated compounds that can be directly oxidised to the 2-(2-aminoethyl)-phenol. Other substrates amenable to the C-H borylation-reduction sequence include mono and diamino-arenes and carbazoles. This represents a simple method to make borylated molecules that would be convoluted to access otherwise (e.g. N-octyl-1-BPin-carbazole). Substituent variation is tolerated at boron as well as in the amide unit, with diarylborenium cations also amenable to reduction. This enables a double C-H borylation-reduction-hydrolysis sequence to access B,N-polycyclic aromatic hydrocarbons (PAHs), including an example where both the boron and nitrogen centres contain functionalisable handles (N-H and B-OH). This method is therefore a useful addition to the metal-free borylation toolbox for accessing useful intermediates (ArylBPin) and novel B,N-PAHs.

5.
Chemistry ; 29(33): e202300593, 2023 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-36929782

RESUMEN

Exploiting bimetallic cooperation alkali-metal manganate (II) complexes can efficiently promote oxidative homocoupling of terminal alkynes furnishing an array of conjugated 1,3-diynes. The influence of the alkali-metal on these C-C bond forming processes has been studied by preparing and structurally characterizing the alkali-metal tetra(alkyl) manganates [(TMEDA)2 Na2 Mn(CH2 SiMe3 )4 ] and [(PMDETA)2 K2 Mn(CH2 SiMe3 )4 ]. Reactivity studies using phenylacetylene as a model substrate have revealed that for the homocoupling to take place initial metalation of the alkyne is required. In this regard, the lack of basicity of neutral Mn(CH2 SiMe3 )2 precludes the formation of the diyne. Contrastingly, the tetra(alkyl) alkali-metal manganates behave as polybasic reagents, being able to easily deprotonate phenylacetylene yielding [{(THF)4 Na2 Mn(C≡CPh)4 }∞ ] and [(THF)4 Li2 Mn(C≡CPh)4 ]. Controlled exposure of [{(THF)4 Na2 Mn(C≡CPh)4 }∞ ] and [(THF)4 Li2 Mn(C≡CPh)4 ] to dry air confirmed their intermediary in formation of 1,4-diphenyl-1,3-butadiyne in excellent yields. While the Na/Mn(II) partnership proved to be the most efficient in stoichiometric transformations, under catalytic regimes, the combination of MC≡CAr (M= Li, Na) and MnCl2 (6 mol %) only works for lithium, most likely due to the degradation of alkynylsodiums under the aerobic reaction conditions.


Asunto(s)
Alquinos , Sodio , Alquinos/química , Litio/química , Estrés Oxidativo , Álcalis
6.
Organometallics ; 41(18): 2638-2647, 2022 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-36185396

RESUMEN

Dimeric aminoboranes, [H2BNR2]2 (R = Me or CH2CH2) containing B2N2 cores, can be activated by I2, HNTf2 (NTf2 = [N(SO2CF3)2]), or [Ph3C][B(C6F5)4] to form isolable H2B(µ-NR2)2BHX (for X = I or NTf2). For X = [B(C6F5)4]- further reactivity, presumably between [H2B(µ-NMe2)2BH][B(C6F5)4] and aminoborane, forms a B3N3-based monocation containing a three-center two electron B-(µ-H)-B moiety. The structures of H2B(µ-NMe2)2BH(I) and [(µ-NMe2)BH(NTf2)]2 indicated a sterically crowded environment around boron, and this leads to the less common O-bound mode of NTf2 binding. While the iodide congener reacted very slowly with alkynes, the NTf2 analogues were more reactive, with hydroboration of internal alkynes forming (vinyl)2BNR2 species and R2NBH(NTf2) as the major products. Further studies indicated that the B2N2 core is maintained during the first hydroboration, and that it is during subsequent steps that B2N2 dissociation occurs. In the mono-boron systems, for example, i Pr2NBH(NTf2), NTf2 is N-bound; thus, they have less steric crowding around boron relative to the B2N2 systems. Notably, the monoboron systems are much less reactive in alkyne hydroboration than the B2N2-based bis-boranes, despite the former being three coordinate at boron while the latter are four coordinate at boron. Finally, these B2N2 electrophiles are much more prone to dissociate into mono-borane species than pyrazabole [H2B(µ-N2C3H3)]2 analogues, making them less useful for the directed diborylation of a single substrate.

7.
Angew Chem Int Ed Engl ; 61(32): e202206230, 2022 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-35686751

RESUMEN

Pyrazabole (1) is a readily accessible diboron compound that can be transformed into ditopic electrophiles. In 1 (and derivatives), the B⋅⋅⋅B separation is ca. 3 Å, appropriate for one boron centre bonding to N and one to the C7 of indoles and indolines. This suitable B⋅⋅⋅B separation enables double E-H (E=N/C) functionalisation of indoles and indolines. Specifically, the activation of 1 with HNTf2 generates an electrophile that transforms N-H indoles and indolines into N/C7-diborylated indolines, with N-H borylation directing subsequent C7-H borylation. Indole reduction to indoline occurs before C-H borylation and our studies indicate this proceeds via hydroboration-C3-protodeboronation to produce an intermediate that then undergoes C7 borylation. The borylated products can be converted in situ into C7-BPin-N-H-indolines. Overall, this represents a transient directed C-H borylation to form useful C7-BPin-indolines.


Asunto(s)
Boro , Indoles , Catálisis , Estructura Molecular
8.
Chem Sci ; 13(9): 2661-2668, 2022 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-35340859

RESUMEN

Despite the general high fluorophilicity of boron, organoboranes such as BEt3 and 3,5-(CF3)2C6H3-BPin are shown herein for the first time, to our knowledge, to be effective (solid to solution) phase-transfer catalysts for the fluorination of certain organohalides with CsF. Significant (up to 30% e.e.) chiral induction during nucleophilic fluorination to form ß-fluoroamines using oxazaborolidine (pre)catalysts and CsF also can be achieved. Screening different boranes revealed a correlation between calculated fluoride affinity of the borane and nucleophilic fluorination reactivity, with sufficient fluoride affinity required for boranes to react with CsF and form Cs[fluoroborate] salts, but too high a fluoride affinity leading to fluoroborates that are poor at transferring fluoride to an electrophile. Fluoride affinity is only one component controlling reactivity in this context; effective fluorination also is dependent on the ligation of Cs+ which effects both the phase transfer of CsF and the magnitude of the [Cs⋯F-BR3] interaction and thus the B-F bond strength. Effective ligation of Cs+ (e.g. by [2.2.2]-cryptand) facilitates phase transfer of CsF by the borane but also weakens the Cs⋯F-B interaction which in turn strengthens the B-F bond - thus disfavouring fluoride transfer to an electrophile. Combined, these findings indicate that optimal borane mediated fluorination occurs using robust (to the fluorination conditions) boranes with fluoride affinity of ca. 105 kJ mol-1 (relative to Me3Si+) under conditions where a signficant Cs⋯F-B interaction persists.

9.
Chem Sci ; 13(4): 1136-1145, 2022 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-35211280

RESUMEN

Helicenes are chiral polycyclic aromatic hydrocarbons (PAHs) of significant interest, e.g. in supramolecular chemistry, materials science and asymmetric catalysis. Herein an enhanced N-directed electrophilic C-H borylation methodology has been developed that provides access to azaborine containing helicenes (BN-helicenes). This borylation process proceeds via protonation of an aminoborane with bistriflimidic acid. DFT calculations reveal the borenium cation formed by protonation to be more electrophilic than the product derived from aminoborane activation with BBr3. The synthesised helicenes include BN-analogues of archetypal all carbon [5]- and [6]helicenes. The replacement of a CC with a BN unit (that has a longer bond) on the outer helix increases the strain in the BN congeners and the racemization half-life for a BN-[5]helicene relative to the all carbon [5]helicene. BN incorporation also increases the fluorescence efficiency of the helicenes, a direct effect of BN incorporation altering the distribution of the key frontier orbitals across the helical backbone relative to carbo-helicenes.

10.
Dalton Trans ; 50(39): 14018-14026, 2021 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-34546250

RESUMEN

Amido-zincates containing hydrides are underexplored yet potentially useful complexes. Attempts to access this type of zincate through combining amido-organo zincates and pinacolborane (HBPin) via Zn-C/H-BPin exchange led instead to preferential formation of amide-BPin and/or [amide-BPin(Y)]- (Y = Ph, amide, H), when the amide is hexamethyldisilazide or 2,2,6,6-tetramethylpiperidide and the hydrocarbyl group was phenyl or ethyl. In contrast, the use of a dipyridylamide (dpa) based arylzinc complex led to Zn-C/H-BPin metathesis being the major outcome. Independent synthesis and full characterisation of two LnLi[(dpa)ZnPh2] (L = THF, n = 3; L = PMDETA, n = 1) complexes, 1 and 3, respectively, enabled reactivity studies that demonstrated that these species display zincate type reactivity (by comparison to the lower reactivity of the neutral complex (Me-dpa)ZnPh2, 4, Me-dpa = 2,2'-dipyridyl-N-methylamine). This included 1 performing the rapid deprotonation of 4-ethynyltoluene and also phenyl transfer to α,α,α-trifluoroacetophenone in contrast to neutral complex 4. Complex 1 reacted with one equivalent of HBPin to give predominantly PhBPin (ca. 90%) and a lithium amidophenylzincate containing a hydride unit, complex 7-A, as the major zinc containing product. Complex 7-A transfers hydride to an electrophile preferentially over phenyl, indicating it reacts as a hydridozincate. Attempts to react 1 with >1 equivalent of HBPin or with catecholborane led to more complex outcomes, which included significant borane and dpaZn substituent scrambling, two examples of which were crystallographically characterised. While this work provides proof of principle for Zn-C/H-BPin exchange as a route to form an amido-zincate containing a hydride, amido-organozincates that undergo more selective Zn-C/H-BPin exchange still are required.

11.
Inorg Chem ; 60(18): 13784-13796, 2021 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-34191489

RESUMEN

Exploiting the steric incompatibility of the tris(alkyl)gallium GaR3 (R = CH2SiMe3) and the bulky N-heterocyclic carbene (NHC) 1,3-bis(tert-butyl)imidazol-2-ylidene (ItBu), here we report the B-H bond activation of pinacolborane (HBPin), which has led to the isolation and structural authentication of a novel ion pair, [{ItBu-BPin}+{GaR3(µ-H)GaR3}-] (2). Contrastingly, neither ItBu or GaR3 was able to react with HBPin under the conditions of this study. Combining an NHC-stabilized borenium cation, [{ItBu-BPin}+], with an anionic dinuclear gallate, [{GaR3(µ-H)GaR3}-], 2 proved to be unstable in solution at room temperature, evolving to the abnormal NHC-Ga complex [BPinC{{N(tBu)]2CHCGa(R)3}] (3). Interestingly, the structural isomer of 2, with the borenium cation residing at the C4 position of the carbene, [{aItBu-BPin}+{GaR3(µ-H)GaR3}-] (4), was obtained when the abnormal NHC complex [aItBu·GaR3] (1) was heated to 70 °C with HBPin, demonstrating that, under these forced conditions, it is possible to induce thermal frustration of the Lewis base/Lewis acid components of 1, enabling the activation of HBPin. Building on these stoichiometric studies, the frustrated Lewis pair (FLP) reactivity observed for the GaR3/ItBu combination with HBPin could then be upgraded to catalytic regimes, allowing the efficient hydroboration of a range of aldehydes and ketones under mild reaction conditions. Mechanistic insights into the possible reaction pathway involved in this process have been gained by combining kinetic investigations with a comparative study of the catalytic capabilities of several gallium and borenium species related to 2. Disclosing a new cooperative partnership, reactions are proposed to occur via the formation of a highly reactive monomeric hydride gallate, [{ItBu-BPin}+{GaR3(H)}-] (I). Each anionic and cationic component of I plays a key role for success of the hydroboration, with the nucleophilic monomeric gallate anion favoring the transfer of its hydride to the C═O bond of the organic substate, which in turn is activated by coordination to the borenium cation.

13.
Angew Chem Int Ed Engl ; 60(6): 3247-3253, 2021 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-33090640

RESUMEN

Pairing lithium and manganese(II) to form lithium manganate [Li2 Mn(CH2 SiMe3 )4 ] enables the efficient direct Mn-I exchange of aryliodides, affording transient (aryl)lithium manganate intermediates which in turn undergo spontaneous C-C homocoupling at room temperature to furnish symmetrical (bis)aryls in good yields under mild reaction conditions. The combination of EPR with X-ray crystallographic studies has revealed the mixed Li/Mn constitution of the organometallic intermediates involved in these reactions, including the homocoupling step which had previously been thought to occur via a single-metal Mn aryl species. These studies show Li and Mn working together in a synergistic manner to facilitate both the Mn-I exchange and the C-C bond-forming steps. Both steps are carefully synchronized, with the concomitant generation of the alkyliodide ICH2 SiMe3 during the Mn-I exchange being essential to the aryl homocoupling process, wherein it serves as an in situ generated oxidant.

14.
Angew Chem Int Ed Engl ; 58(43): 15381-15385, 2019 10 21.
Artículo en Inglés | MEDLINE | ID: mdl-31461213

RESUMEN

Indoles are privileged heterocycles found in many biologically active pharmaceuticals and natural products. However, the selective functionalization of the benzenoid moiety in indoles in preference to the more reactive pyrrolic unit is a significant challenge. Herein we report that N-acyl directing groups enable the C7-selective C-H borylation of indoles using just BBr3 . This transformation shows some functional-group tolerance and notably proceeds with C6 substituted indoles. The directing group can be readily removed in situ and the products isolated as the pinacol boronate esters. Acyl-directed electrophilic borylation can be extended to carbazoles and anilines with excellent ortho selectivity. 4-amino-indoles are amenable to this process, with acyl group installation and directed electrophilic C-H borylation enabling selective formation of C5-BPin-indoles.


Asunto(s)
Compuestos de Anilina/química , Boro/química , Indoles/química , Compuestos de Boro/química , Carbono/química , Cristalografía por Rayos X , Hidrógeno/química , Isomerismo , Conformación Molecular , Pirroles/química
15.
Chem Rev ; 119(14): 8332-8405, 2019 07 24.
Artículo en Inglés | MEDLINE | ID: mdl-30888154

RESUMEN

The development of synthetic chemistry since the early 1900s owes much to the service of organolithium reagents. Brilliant bases (e.g., deprotonating C-H bonds), nucleophiles (e.g., adding to unsaturated molecules), and transfer agents (e.g., delivering ligands to other metals), these versatile virtuosi and to a lesser extent the organic derivatives of the other common alkali metals sodium and potassium have proved indispensable in both academia and technology. Today these monometallic compounds are still utilized widely in synthetic campaigns, but in recent years they have been joined by an assortment of bimetallic formulations that also contain an alkali metal but in company with another metal. These bimetallic formulations often exhibit unique chemistry that can be interpreted in terms of synergistic effects, for which the alkali metal is essential, though it is often the second metal that performs the synthetic transformation. Here, this "alkali-metal-mediated" chemistry is surveyed focusing mainly on bimetallic formulations containing two alkali metals or an alkali metal paired with magnesium, calcium, zinc, aluminum, or gallium. In this International Year of the Periodic Table (IYPT), we ponder whether a Pairiodic Table of Element Pairs will emerge in the future.

16.
Angew Chem Int Ed Engl ; 57(33): 10630-10634, 2018 08 13.
Artículo en Inglés | MEDLINE | ID: mdl-29856904

RESUMEN

Pairing a range of bis(aryl) zinc reagents ZnAr2 with the stronger Lewis acidic [(ZnArF2 )] (ArF =C6 F5 ), enables highly stereoselective cross-coupling between glycosyl bromides and ZnAr2 without the use of a transition metal. Reactions occur at room temperature with excellent levels of stereoselectivity, where ZnArF2 acts as a non-coupling partner although its presence is crucial for the execution of the C(sp2 )-C(sp3 ) bond formation process. Mechanistic studies have uncovered a unique synergistic partnership between the two zinc reagents, which circumvents the need for transition-metal catalysis or forcing reaction conditions. Key to the success of the coupling is the avoidance of solvents that act as Lewis bases versus diarylzinc compounds (e.g. THF).

17.
Chemistry ; 24(41): 10541-10549, 2018 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-29750849

RESUMEN

Expanding the scope and applications of anionic N-heterocyclic carbenes (NHCs), a novel series of magnesium NHC complexes is reported using a mixed sodium-magnesium approach. Sequential reactivity of classical imidazol- 2-ylidene carbene IPr with NaR and MgR2 (R=CH2 SiMe3 ) affords [(THF)3 Na(µ-IPr- )MgR2 (THF)] (2) [IPr- =:C{[N(2,6-iPr2 C6 H3 )]2 CHC] containing an anionic NHC ligand, whereas surprisingly sodium magnesiate [NaMgR3 ] fails to deprotonate IPr affording instead the redistribution coordination adduct [IPr2 Na2 MgR4 ] (1). Compound 2 undergoes selective C2-methylation when treated with MeOTf furnishing novel abnormal NHC complex [{aIPrMe MgR2 }2 ] (3). Dissolving 3 in THF led to the dissociation of this complex into MgR2 and aIPrMe with the latter isomerizing to the olefinic NHC IPr=CH2 . The ability of 2 and 3 to transfer their anionic and abnormal NHC ligands, respectively to AuI metal fragments has been investigated allowing the isolation and structural characterization of [RAu(µ-IPr- )MgR(THF)2 ] (4) and [aIPrMe AuR] (5) respectively. In both cases transfer of an alkyl R group is observed. However while 3 can also transfer its abnormal NHC ligand to give 5, in 4 the anionic NHC still remains coordinated to Mg via its C4 position, whereas the {AuR} fragment occupies the C2 position previously filled by a donor-solvated {Na(THF)3 }+ cation.

18.
Chemistry ; 24(31): 7786-7793, 2018 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-29603459

RESUMEN

Defined as the transfer of ligands from one metal to another, transmetallation is a common reaction in organometallic chemistry. Its chemical celebrity stems from its role in important catalytic cycles of cross-coupling reactions such as those of Negishi, Sonogashira, Stille, or Suzuki. This article focuses on trans-metal-trapping (TMT), which could be construed as partially complete transmetallations. On mixing two distinct organometallic compounds, of for example lithium with aluminium or gallium, the two metals meet in a crossover co-complex, but the reaction ceases at that point and full transmetallation is not reached. Though in its infancy, trans-metal-trapping shows promise in transforming failed lithiations into successful lithiations and in stabilising sensitive carbanions through cooperative bimetallic effects making them more amenable to onward reactivity.

19.
Chemistry ; 24(39): 9940-9948, 2018 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-29697160

RESUMEN

A series of heteroleptic monoamido-monohydrido-dialkylaluminate complexes of general formula [iBu2 AlTMPHLi⋅donor] were synthesized and characterised in solution and in the solid state. Applying these complexes in catalytic hydroboration reactions with representative aldehydes and ketones reveals that all are competent, however a definite donor substituent effect is discernible. The bifunctional nature of the complexes is also probed by assessing their performance in metallation of a triazole and phenylacetylene and addition across pyrazine. These results lead to an example of phenylacetylene hydroboration, which likely proceeds via deprotonation, rather than insertion as observed with the aldehydes and ketones. Collectively, the results emphasise that reactivity is strongly influenced by both the mixed-metal constitution and mixed-ligand constitution of the new aluminates.

20.
Chem Commun (Camb) ; 54(20): 2455-2462, 2018 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-29411838

RESUMEN

N-Heterocyclic carbenes (NHCs) have become indispensable ligands across a broad swathe of the synthetic and catalytic landscape, not in small part due to their ease of electronic and steric tunability. One of the latest additions to this important family of ligands are anionic NHCs, which have become valuable precursors to access abnormal NHC complexes as well as shown great potential for further NHC functionalisation. Deprotonative metallation has emerged as one of the most versatile methodologies to access anionic NHCs, where judicious choice of reaction conditions and metallating agents can finely tune the regioselectivity of the reaction. This Feature Article focuses on the recent emergence of s-block metal-mediated NHC metallations and the new opportunities this methodology offers.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA