Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 97
Filtrar
1.
Eur Heart J Open ; 4(4): oeae059, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39119202

RESUMEN

Aims: Disruption of the predictable symmetry of the healthy heart may be an indicator of cardiovascular risk. This study defines the population distribution of ventricular asymmetry and its relationships across a range of prevalent and incident cardiorespiratory diseases. Methods and results: The analysis includes 44 796 UK Biobank participants (average age 64.1 ± 7.7 years; 51.9% women). Cardiovascular magnetic resonance (CMR) metrics were derived using previously validated automated pipelines. Ventricular asymmetry was expressed as the ratio of left and right ventricular (LV and RV) end-diastolic volumes. Clinical outcomes were defined through linked health records. Incident events were those occurring for the first time after imaging, longitudinally tracked over an average follow-up time of 4.75 ± 1.52 years. The normal range for ventricular symmetry was defined in a healthy subset. Participants with values outside the 5th-95th percentiles of the healthy distribution were classed as either LV dominant (LV/RV > 112%) or RV dominant (LV/RV < 80%) asymmetry. Associations of LV and RV dominant asymmetry with vascular risk factors, CMR features, and prevalent and incident cardiovascular diseases (CVDs) were examined using regression models, adjusting for vascular risk factors, prevalent diseases, and conventional CMR measures. Left ventricular dominance was linked to an array of pre-existing vascular risk factors and CVDs, and a two-fold increased risk of incident heart failure, non-ischaemic cardiomyopathies, and left-sided valvular disorders. Right ventricular dominance was associated with an elevated risk of all-cause mortality. Conclusion: Ventricular asymmetry has clinical utility for cardiovascular risk assessment, providing information that is incremental to traditional risk factors and conventional CMR metrics.

2.
Rev Cardiovasc Med ; 25(2): 37, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-39077350

RESUMEN

Sarcoidosis is an inflammatory multisystemic disease of unknown etiology characterized by the formation of non-caseating granulomas. Sarcoidosis can affect any organ, predominantly the lungs, lymphatic system, skin and eyes. While > 90% of patients with sarcoidosis have lung involvement, an estimated 5% of patients with sarcoidosis have clinically manifest cardiac sarcoidosis (CS), whereas approximately 25% have asymptomatic, clinically silent cardiac involvement verified by autopsy or imaging studies. CS can present with conduction disturbances, ventricular arrhythmias, heart failure or sudden cardiac death. Approximately 30% of < 60-year-old patients presenting with unexplained high degree atrioventricular (AV) block or ventricular tachycardia are diagnosed with CS, therefore CS should be strongly considered in such patients. CS is the second leading cause of death among patients affected by sarcoidosis after pulmonary sarcoidosis, therefore its early recognition is important, because early treatment may prevent death from cardiovascular involvement. The establishment of isolated CS diagnosis sometimes can be quite difficult, when extracardiac disease cannot be verified. The other reason for the difficulty to diagnose CS is that CS is a chameleon of cardiology and it can mimic (completely or almost completely) different cardiac diseases, such as arrhythmogenic cardiomyopathy, giant cell myocarditis, dilated, restrictive and hypertrophic cardiomyopathies. In this review article we will discuss the current diagnosis and management of CS and delineate the potential difficulties and pitfalls of establishing the diagnosis in atypical cases of isolated CS.

3.
Front Immunol ; 15: 1397052, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38911866

RESUMEN

Background: Immunocompromised patients are at particular risk of Severe Acute Respiratory Syndrome Corona Virus 2 (SARS-CoV-2) infection and previous findings suggest that the infection or vaccination induced immune response decreases over time. Our main goal was to investigate the SARS-CoV-2-specific immune response in rheumatoid arthritis patients and healthy controls over prolonged time. Methods: The SARS-CoV-2-specific humoral immune response was measured by Elecsys Anti-SARS-CoV-2 Spike (S) immunoassay, and antibodies against SARS-CoV-2 nucleocapsid protein (NCP) were also evaluated by Euroimmun enzyme-linked immunosorbent assay (ELISA) test. The SARS-CoV-2-specific T-cell response was detected by an IFN- γ release assay. Results: We prospectively enrolled 84 patients diagnosed with rheumatoid arthritis (RA) and 43 healthy controls in our longitudinal study. Our findings demonstrate that RA patients had significantly lower anti-S antibody response and reduced SARS-CoV-2-specific T-cell response compared to healthy controls (p<0.01 for healthy controls, p<0.001 for RA patients). Furthermore, our results present evidence of a notable increase in the SARS-CoV-2-specific humoral immune response during the follow-up period in both study groups (p<0.05 for healthy volunteers, p<0.0001 for RA patients, rank-sum test). Participants who were vaccinated against Coronavirus disease-19 (COVID-19) during the interim period had 2.72 (CI 95%: 1.25-5.95, p<0.05) times higher anti-S levels compared to those who were not vaccinated during this period. Additionally, individuals with a confirmed SARS-CoV-2 infection exhibited 2.1 times higher (CI 95%: 1.31-3.37, p<0.01) anti-S levels compared to those who were not infected during the interim period. It is worth noting that patients treated with targeted therapy had 52% (CI 95%: 0.25-0.94, p<0.05) lower anti-S levels compared to matched patients who did not receive targeted therapy. Concerning the SARS-CoV-2-specific T-cell response, our findings revealed that its level had not changed substantially in the study groups. Conclusion: Our present data revealed that the level of SARS-CoV-2-specific humoral immune response is actually higher, and the SARS-CoV-2-specific T-cell response remained at the same level over time in both study groups. This heightened humoral response, the nearly permanent SARS-CoV-2-specific T-cell response and the coexistence of different SARS-CoV-2 variants within the population, might be contributing to the decline in severe COVID-19 cases.


Asunto(s)
Anticuerpos Antivirales , Artritis Reumatoide , COVID-19 , Inmunidad Humoral , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus , Humanos , Artritis Reumatoide/inmunología , SARS-CoV-2/inmunología , Masculino , Femenino , Persona de Mediana Edad , COVID-19/inmunología , Anticuerpos Antivirales/sangre , Anticuerpos Antivirales/inmunología , Anciano , Glicoproteína de la Espiga del Coronavirus/inmunología , Adulto , Linfocitos T/inmunología , Proteínas de la Nucleocápside de Coronavirus/inmunología , Estudios Prospectivos , Fosfoproteínas/inmunología , Estudios de Casos y Controles , Estudios Longitudinales
4.
Diagnostics (Basel) ; 14(11)2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38893661

RESUMEN

Diastolic dysfunction (DD) is a prevalent and clinically significant complication after heart transplantation (HTX). We aimed to characterize the diastolic function of HTX recipients with both short-term and long-term follow-ups by applying left atrial (LA) deformation analysis. We consecutively enrolled and followed up with 33 HTX patients. Three assessments were performed one month, 3-5 months, and 3-5 years after surgery. Beyond conventional echocardiographic measurements, apical four-chamber views optimized for speckle tracking analysis were acquired and post-processed by dedicated software solutions (TomTec AutoStrain LA and LV). Left atrial phasic functions were characterized by reservoir, conduit, and contraction strains. We categorized diastolic function according to current guidelines (normal diastolic function, indeterminate, DD). At the first assessment, nine (27%) patients were in the DD category, and eleven (33%) were indeterminate. At the second assessment, only one patient (3%) remained in the DD category and six (18%) were indeterminate. At the third assessment, 100% of patients were categorized as having normal diastolic function. LA reservoir strain gradually increased over time. LA contraction strain significantly improved from the second to the third assessment. We found a correlation between the LA reservoir strain and NT-proBNP (r = 0.40, p < 0.05). DD is prevalent immediately after HTX but rare until the end of the first postoperative quarter. Speckle tracking analysis enables the characterization of LA phasic functions that may reflect both short- and long-term changes in diastolic function and correlate with NT-proBNP.

5.
Clin Res Cardiol ; 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38587562

RESUMEN

AIMS: Late gadolinium enhancement (LGE) assessed by cardiovascular magnetic resonance (CMR) can evaluate myocardial scar associated with a higher risk of sudden cardiac death (SCD), which can guide the selection between cardiac resynchronization therapy with or without a defibrillator (CRT-P/CRT-D). Our aim was to investigate the association between LGE and SCD risk in patients with CRT using the LGE-CMR technique. METHODS AND RESULTS: We performed a systematic literature search using four databases. The target population was CRT candidates. The primary endpoint was SCD. The risk of bias was assessed using the QUIPS tool. Fifteen eligible articles were included with a total of 2494 patients, of whom 27%, 56%, and 19% had an implantable cardioverter defibrillator (ICD), CRT-D, and CRT-P, respectively. Altogether, 54.71% of the cohort was LGE positive, who had a 72% higher risk for SCD (HR 1.72; 95% CI 1.18-2.50) compared to LGE negatives. In non-ischemic patients, the proportion of LGE positivity was 46.6%, with a significantly higher risk for SCD as compared to LGE negatives (HR 2.42; 95% CI 1.99-2.94). The subgroup of CRT-only patients showed no difference between the LGE-positive vs. negative candidates (HR 1.17; 95% CI 0.82-1.68). Comparable SCD risk was observed between articles with short- (OR 7.47; 95% CI 0.54-103.12) vs. long-term (OR 6.15; 95% CI 0.96-39.45) follow-up time. CONCLUSION: LGE-CMR positivity was associated with an increased SCD risk; however, in CRT candidates, the difference in risk reduction between LGE positive vs. negative patients was statistically not significant, suggesting a role of reverse remodeling. LGE-CMR before device implantation could be crucial in identifying high-risk patients even in non-ischemic etiology.

6.
JACC Cardiovasc Imaging ; 17(5): 533-551, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38597854

RESUMEN

Population aging is one of the most important demographic transformations of our time. Increasing the "health span"-the proportion of life spent in good health-is a global priority. Biological aging comprises molecular and cellular modifications over many years, which culminate in gradual physiological decline across multiple organ systems and predispose to age-related illnesses. Cardiovascular disease is a major cause of ill health and premature death in older people. The rate at which biological aging occurs varies across individuals of the same age and is influenced by a wide range of genetic and environmental exposures. The authors review the hallmarks of biological cardiovascular aging and their capture using imaging and other noninvasive techniques and examine how this information may be used to understand aging trajectories, with the aim of guiding individual- and population-level interventions to promote healthy aging.


Asunto(s)
Envejecimiento , Enfermedades Cardiovasculares , Sistema Cardiovascular , Valor Predictivo de las Pruebas , Humanos , Envejecimiento/metabolismo , Enfermedades Cardiovasculares/fisiopatología , Enfermedades Cardiovasculares/diagnóstico por imagen , Enfermedades Cardiovasculares/metabolismo , Sistema Cardiovascular/fisiopatología , Sistema Cardiovascular/metabolismo , Factores de Edad , Anciano , Envejecimiento Saludable , Pronóstico , Persona de Mediana Edad , Femenino , Masculino , Anciano de 80 o más Años , Animales , Senescencia Celular
7.
Int J Sports Med ; 45(6): 473-480, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38301728

RESUMEN

The aim of this study was to characterize the right ventricular (RV) contraction pattern and its associations with exercise capacity in a large cohort of adolescent athletes using resting three-dimensional echocardiography (3DE). We enrolled 215 adolescent athletes (16±1 years, 169 males, 12±6 hours of training/week) and compared them to 38 age and sex-matched healthy, sedentary adolescents. We measured the 3DE-derived biventricular ejection fractions (EF). We also determined the relative contributions of longitudinal EF (LEF/RVEF) and radial EF (REF/RVEF) to the RVEF. Same-day cardiopulmonary exercise testing was performed to calculate VO2/kg. Both LV and RVEFs were significantly lower (athletes vs. controls; LVEF: 57±4 vs 61±3, RVEF: 55±5 vs 60±5%, p<0.001). Interestingly, while the relative contribution of radial shortening to the global RV EF was also reduced (REF/RVEF: 0.40±0.10 vs 0.49±0.06, p<0.001), the contribution of the longitudinal contraction was significantly higher in athletes (LEF/RVEF: 0.45±0.08 vs 0.40±0.07, p<0.01). The supernormal longitudinal shortening correlated weakly with a higher VO2/kg (r=0.138, P=0.044). Similarly to the adult athlete's heart, the cardiac adaptation of adolescent athletes comprises higher biventricular volumes and lower resting functional measures with supernormal RV longitudinal shortening. Characteristic exercise-induced structural and functional cardiac changes are already present in adolescence.


Asunto(s)
Ecocardiografía Tridimensional , Prueba de Esfuerzo , Ventrículos Cardíacos , Volumen Sistólico , Función Ventricular Derecha , Humanos , Adolescente , Masculino , Femenino , Ecocardiografía Tridimensional/métodos , Función Ventricular Derecha/fisiología , Ventrículos Cardíacos/diagnóstico por imagen , Volumen Sistólico/fisiología , Atletas , Tolerancia al Ejercicio/fisiología , Consumo de Oxígeno/fisiología
8.
Med Sci Sports Exerc ; 56(5): 868-875, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38306315

RESUMEN

PURPOSE: We develop blood test-based aging clocks and examine how these clocks reflect high-volume sports activity. METHODS: We use blood tests and body metrics data of 421 Hungarian athletes and 283 age-matched controls (mean age, 24.1 and 23.9 yr, respectively), the latter selected from a group of healthy Caucasians of the National Health and Nutrition Examination Survey (NHANES) to represent the general population ( n = 11,412). We train two age prediction models (i.e., aging clocks) using the NHANES dataset: the first model relies on blood test parameters only, whereas the second one additionally incorporates body measurements and sex. RESULTS: We find lower age acceleration among athletes compared with the age-matched controls with a median value of -1.7 and 1.4 yr, P < 0.0001. BMI is positively associated with age acceleration among the age-matched controls ( r = 0.17, P < 0.01) and the unrestricted NHANES population ( r = 0.11, P < 0.001). We find no association between BMI and age acceleration within the athlete dataset. Instead, age acceleration is positively associated with body fat percentage ( r = 0.21, P < 0.05) and negatively associated with skeletal muscle mass (Pearson r = -0.18, P < 0.05) among athletes. The most important blood test features in age predictions were serum ferritin, mean cell volume, blood urea nitrogen, and albumin levels. CONCLUSIONS: We develop and apply blood test-based aging clocks to adult athletes and healthy controls. The data suggest that high-volume sports activity is associated with slowed biological aging. Here, we propose an alternative, promising application of routine blood tests.


Asunto(s)
Deportes , Adulto , Humanos , Encuestas Nutricionales , Deportes/fisiología , Atletas , Envejecimiento , Pruebas Hematológicas
9.
Front Cardiovasc Med ; 11: 1337378, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38380180

RESUMEN

Introduction: The genotype of symptomatic left ventricular noncompaction phenotype (LVNC) subjects with preserved left ventricular ejection fraction (LVEF) and its effect on clinical presentation are less well studied. We aimed to characterize the genetic, cardiac magnetic resonance (CMR) and clinical background, and genotype-phenotype relationship in LVNC with preserved LVEF. Methods: We included 54 symptomatic LVNC individuals (LVEF: 65 ± 5%) whose samples were analyzed with a 174-gene next-generation sequencing panel and 54 control (C) subjects. The results were evaluated using the criteria of the American College of Medical Genetics and Genomics. Medical data suggesting a higher risk of cardiovascular complications were considered "red flags". Results: Of the LVNC population, 24% carried pathogenic or likely pathogenic (P) mutations; 56% carried variants of uncertain significance (VUS); and 20% were free from cardiomyopathy-related mutations. Regarding the CMR parameters, the LVNC and C groups differed significantly, while the three genetic subgroups were comparable. We found a significant relationship between red flags and genotype; furthermore, the number of red flags in a single subject differed significantly among the genetic subgroups (p = 0.002) and correlated with the genotype (r = 0.457, p = 0.01). In 6 out of 7 LVNC subjects diagnosed in childhood, P or VUS mutations were found. Discussion: The large number of P mutations and the association between red flags and genotype underline the importance of genetic-assisted risk stratification in symptomatic LVNC with preserved LVEF.

10.
Eur Radiol ; 34(4): 2689-2698, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37804340

RESUMEN

OBJECTIVES: Visualizing left atrial anatomy including the pulmonary veins (PVs) is important for planning the procedure of pulmonary vein isolation with ablation in patients with atrial fibrillation (AF). The aims of our study are to investigate the feasibility of the 3D whole-heart bright-blood and black-blood phase-sensitive (BOOST) inversion recovery sequence in patients with AF scheduled for ablation or electro-cardioversion, and to analyze the correlation between image quality and heart rate and rhythm of patients. METHODS: BOOST was performed for assessing PVs both with T2 preparation pre-pulse (T2prep) and magnetization transfer preparation (MTC) in 45 patients with paroxysmal or permanent AF scheduled for ablation or electro-cardioversion. Image quality analyses were performed by two independent observers. Qualitative assessment was made using the Likert scale; for quantitative analysis, signal to noise ratios (SNR) and contrast to noise ratios (CNR) were calculated for each PV. Heart rate and rhythm were analyzed based on standard 12-lead ECGs. RESULTS: All MTC-BOOST acquisitions achieved diagnostic quality in the PVs, while a significant proportion of T2prep-BOOST images were not suitable for assessing PVs. SNR and CNR values of the MTC-BOOST bright-blood images were higher if patients had sinus rhythm. We found a significant or nearly significant negative correlation between heart rate and the SNR and CNR values of MTC-BOOST bright-blood images. CONCLUSION: 3D whole-heart MTC-BOOST bright-blood imaging is suitable for visualizing the PVs in patients with AF, producing diagnostic image quality in 100% of cases. However, image quality was influenced by heart rate and rhythm. CLINICAL RELEVANCE STATEMENT: The novel 3D whole-heart BOOST CMR sequence needs no contrast administration and is performed during free-breathing; therefore, it is easy to use for a wide range of patients and is suitable for visualizing the PVs in patients with AF. KEY POINTS: • The applicability of the novel 3D whole-heart bright-blood and black-blood phase-sensitive sequence to pulmonary vein imaging in clinical practice is unknown. • Magnetization transfer-bright-blood and black-blood phase-sensitive imaging is suitable for visualizing the pulmonary veins in patients with atrial fibrillation with excellent or good image quality. • Bright-blood and black-blood phase-sensitive cardiac magnetic resonance sequence is easy to use for a wide range of patients as it needs no contrast administration and is performed during free-breathing.


Asunto(s)
Fibrilación Atrial , Ablación por Catéter , Venas Pulmonares , Humanos , Fibrilación Atrial/diagnóstico por imagen , Fibrilación Atrial/cirugía , Estudios de Factibilidad , Atrios Cardíacos/diagnóstico por imagen , Electrocardiografía , Imagen por Resonancia Magnética , Venas Pulmonares/diagnóstico por imagen , Venas Pulmonares/cirugía , Ablación por Catéter/métodos
11.
Vaccines (Basel) ; 11(12)2023 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-38140190

RESUMEN

Although the COVID-19 pandemic is profoundly changing, data on the effect of vaccination and duration of protection against infection and severe disease can still be advantageous, especially for patients with COPD, who are more vulnerable to respiratory infections. The Hungarian COVID-19 registry was retrospectively investigated for risk of infection and hospitalization by time since the last vaccination, and vaccine effectiveness (VE) was calculated in adults with COPD diagnosis and an exact-matched control group during the Delta variant of concern (VOC) wave in Hungary (September-December 2021). For the matching, sex, age, major co-morbidities, vaccination status, and prior infection data were obtained on 23 August 2021. The study population included 373,962 cases divided into COPD patients (age: 66.67 ± 12.66) and a 1:1 matched group (age: 66.73 ± 12.67). In both groups, the female/male ratio was 52.2:47.7, respectively. Among the unvaccinated, there was no difference between groups in risk for infection or hospitalization. Regarding vaccinated cases, in the COPD group, a slightly faster decline in effectiveness was noted for hospitalization prevention, although in both groups, the vaccine lost its significant effect between 215 and 240 days after the last dose of vaccination. Based on a time-stratified multivariate Cox analysis of the vaccinated cases, the hazard was constantly higher in the COPD group, with an HR of 1.09 (95%: 1.05-1.14) for infection and 1.87 (95% CI: 1.59-2.19) for hospitalization. In our study, COPD patients displayed lower vaccine effectiveness against SARS-CoV-2 infection and hospitalization but a similar waning trajectory, as vaccines lost their preventive effect after 215 days. These data emphasize revaccination measures in the COPD patient population.

12.
Eur Radiol ; 2023 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-37987834

RESUMEN

OBJECTIVES: To use pericardial adipose tissue (PAT) radiomics phenotyping to differentiate existing and predict future heart failure (HF) cases in the UK Biobank. METHODS: PAT segmentations were derived from cardiovascular magnetic resonance (CMR) studies using an automated quality-controlled model to define the region-of-interest for radiomics analysis. Prevalent (present at time of imaging) and incident (first occurrence after imaging) HF were ascertained using health record linkage. We created balanced cohorts of non-HF individuals for comparison. PyRadiomics was utilised to extract 104 radiomics features, of which 28 were chosen after excluding highly correlated ones (0.8). These features, plus sex and age, served as predictors in binary classification models trained separately to detect (1) prevalent and (2) incident HF. We tested seven modeling methods using tenfold nested cross-validation and examined feature importance with explainability methods. RESULTS: We studied 1204 participants in total, 297 participants with prevalent (60 ± 7 years, 21% female) and 305 with incident (61 ± 6 years, 32% female) HF, and an equal number of non-HF comparators. We achieved good discriminative performance for both prevalent (voting classifier; AUC: 0.76; F1 score: 0.70) and incident (light gradient boosting machine: AUC: 0.74; F1 score: 0.68) HF. Our radiomics models showed marginally better performance compared to PAT area alone. Increased PAT size (maximum 2D diameter in a given column or slice) and texture heterogeneity (sum entropy) were important features for prevalent and incident HF classification models. CONCLUSIONS: The amount and character of PAT discriminate individuals with prevalent HF and predict incidence of future HF. CLINICAL RELEVANCE STATEMENT: This study presents an innovative application of pericardial adipose tissue (PAT) radiomics phenotyping as a predictive tool for heart failure (HF), a major public health concern. By leveraging advanced machine learning methods, the research uncovers that the quantity and characteristics of PAT can be used to identify existing cases of HF and predict future occurrences. The enhanced performance of these radiomics models over PAT area alone supports the potential for better personalised care through earlier detection and prevention of HF. KEY POINTS: •PAT radiomics applied to CMR was used for the first time to derive binary machine learning classifiers to develop models for discrimination of prevalence and prediction of incident heart failure. •Models using PAT area provided acceptable discrimination between cases of prevalent or incident heart failure and comparator groups. •An increased PAT volume (increased diameter using shape features) and greater texture heterogeneity captured by radiomics texture features (increased sum entropy) can be used as an additional classifier marker for heart failure.

13.
PLoS One ; 18(9): e0290981, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37747903

RESUMEN

BACKGROUND: Reports of left ventricular noncompaction (LVNC) rarely include descriptions of the right ventricle (RV). This study aimed to describe the characteristics of the RV in LVNC patients with reduced LV function (LVNC-R) compared with patients with dilated cardiomyopathy (DCM) and subjects with LVNC with normal left ventricular ejection fraction (LV-EF) (LVNC-N). METHODS: Forty-four LVNC-R patients, 44 LVNC-N participants, and 31 DCM patients were included in this retrospective study (LV-EF: LVNC-R: 33.4±10.2%; LVNC-N: 65.0±5.9%; DCM: 34.6±7.9%). Each group was divided into two subgroups by the amount of RV trabeculation. RESULTS: There was no difference in the RV-EF between the groups, and the RV trabecular mass correlated positively with the RV volume and negatively with the RV-EF in all the groups. All the measured parameters were comparable between the groups with decreased LV function. The hypertrabeculated RV subgroups showed significantly higher RV volumes and lower RV-EF only in the decreased-LV-function groups. The correlation of LV and RV trabeculation was observed only in the LVNC-N group, while LV trabeculation correlated with RV volumes in both noncompacted groups. Both decreased-LV-function groups had worse RV strain values than the LVNC-N group; however, RV strain values correlated with RV trabeculation predominantly in the LVNC-R group. CONCLUSIONS: The presence and characteristics of RV hypertrabeculation and the correlations between LV trabeculation and RV parameters raise the possibility of RV involvement in noncompaction; moreover, RV strain values might be helpful in the early detection of RV function deterioration.


Asunto(s)
Cardiomiopatía Dilatada , Función Ventricular Izquierda , Humanos , Volumen Sistólico , Cardiomiopatía Dilatada/diagnóstico por imagen , Ventrículos Cardíacos/diagnóstico por imagen , Estudios Retrospectivos
14.
Front Immunol ; 14: 1179620, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37600824

RESUMEN

Introduction: There is a critical gap in understanding which SARS-CoV-2 patients would benefit most from venovenous extracorporeal membrane oxygenation (VV-ECMO) support. The potential role of a dysregulated immune response is still unclear in this patient population. Objectives: To assess the potential predictive value of SARS-CoV-2 specific cellular and humoral immune responses for survival in critically ill COVID-19 patients requiring VV-ECMO. Methods: We conducted a prospective single-center observational study of unvaccinated patients requiring VV-ECMO support treated at the intensive care unit of Semmelweis University Heart and Vascular Center between March and December 2021. Peripheral blood samples were collected to measure the humoral and cellular immune statuses of the patients at the VV-ECMO cannulation. Patients were followed until hospital discharge. Results: Overall, 35 COVID-19 patients (63% men, median age 37 years) on VV-ECMO support were included in our study. The time from COVID-19 verification to ECMO support was a median (IQR) of 10 (7-14) days. Of the patients, 9 (26%) were discharged alive and 26 (74%) died during their hospital stay. Immune tests confirmed ongoing SARS-CoV-2 infection in all the patients, showing an increased humoral immune response. SARS-CoV-2-specific cellular immune response was significantly higher among survivors compared to the deceased patients. A higher probability of survival was observed in patients with markers indicating a higher T cell response detected by both QuantiFeron (QF) and flow cytometry (Flow) assays. (Flow S1 CD8+ ≥ 0.15%, Flow S1 CD4+ ≥ 0.02%, QF CD4 ≥ 0.07, QF whole genome ≥ 0.59). In univariate Cox proportional hazard regression analysis BMI, right ventricular (RV) failure, QF whole genome T cell level, and Flow S1 CD8+ T cell level were associated with mortality, and we found that an increased T cell response showed a significant negative association with mortality, independent of BMI and RV failure. Conclusion: Evaluation of SARS-CoV-2 specific T cell response before the cannulation can aid the risk stratification and evaluation of seriously ill COVID-19 patients undergoing VV-ECMO support by predicting survival, potentially changing our clinical practice in the future.


Asunto(s)
COVID-19 , Oxigenación por Membrana Extracorpórea , Insuficiencia Cardíaca , Masculino , Humanos , Adulto , Femenino , COVID-19/terapia , SARS-CoV-2 , Estudios Prospectivos , Linfocitos T CD8-positivos
15.
Sci Rep ; 13(1): 13978, 2023 08 26.
Artículo en Inglés | MEDLINE | ID: mdl-37633994

RESUMEN

This study assessed the experiences of elite aquatic athletes with coronavirus disease 2019 (COVID-19) during the first World Championship conducted without social distancing and an isolation "bubble". An online questionnaire was completed by 812 athletes (22.7 ± 5.9 years, 467 females) to provide data on demographics, sports activity, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection rates, symptoms, reinfection, vaccination status, and psychological aspects. The answers revealed that 49.4% of athletes had experienced SARS-CoV-2 infection. The infection rates varied significantly across different aquatic sports, with open water swimmers having the lowest (28%) and water polo players (67%) and artistic swimmers (61%) having the highest infection rates (p < 0.0001). The majority reported mild (51%) or moderate (27%) symptoms, while 16% remained asymptomatic. Reinfection occurred in 13%, and 10% of initial infections led to long COVID, with fatigue (65%) and shortness of breath (48%) being the most common long-term symptoms. Significantly, 92% of athletes received at least two vaccine doses and reported a positive vaccination experience (median score of 8 out of 10 for each shot). Mood changes and subjective performance drops significantly correlated with the overall experience scores (rho: 0.617, p < 0.0001, and rho: 0.466, p < 0.0001, respectively). In conclusion, most athletes experienced a benign disease course despite a relatively high infection rate. This study provides valuable insights into the COVID-19 experiences of elite aquatic athletes. The findings emphasize the importance of vaccination initiatives, monitoring psychological well-being and the need to fortify athletes' resilience in the face of future health challenges.


Asunto(s)
COVID-19 , Femenino , Humanos , COVID-19/epidemiología , Estudios Retrospectivos , SARS-CoV-2 , Síndrome Post Agudo de COVID-19 , Reinfección , Atletas
16.
Europace ; 25(9)2023 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-37589170

RESUMEN

AIMS: Premature ventricular beats (PVBs) in athletes are often benign, but sometimes they may be a sign of an underlying disease. We evaluated the prevalence, burden, and morphology of PVBs in healthy voluntary athletes and controls with the main purpose of defining if certain PVB patterns are 'common' and 'training related' and, as such, are more likely benign. METHODS AND RESULTS: We studied 433 healthy competitive athletes [median age 27 (18-43) years, 74% males] and 261 age- and sex-matched sedentary subjects who volunteered to undergo 12-lead 24 h ambulatory electrocardiogram (ECG) monitoring (24H ECG), with a training session in athletes. Ventricular arrhythmias (VAs) were evaluated in terms of their number, complexity [i.e. couplet, triplet, or non-sustained ventricular tachycardia (NSVT)], exercise inducibility, and morphology. Eighty-six percent of athletes and controls exhibited a total of ≤10 PVBs/24 h, and >90% did not show any couplets, triplets, or runs of NSVT > 3 beats. An higher number of PVBs correlated with increasing age (P < 0.01) but not with sex and level of training. The most frequent morphologies among the 36 athletes with >50 PVBs were the infundibular (44%) and fascicular (22%) ones. In a comparison between athletes and sedentary individuals, and male and female athletes, no statistically significant differences were found in PVBs morphologies. CONCLUSION: The prevalence and complexity of VAs at 24H ECG did not differ between athletes and sedentary controls and were not related to the type and amount of sport or sex. Age was the only variable associated with an increased PVB burden. Thus, no PVB pattern in the athlete can be considered 'common' or 'training related'.


Asunto(s)
Deportes , Complejos Prematuros Ventriculares , Femenino , Masculino , Humanos , Adulto , Voluntarios Sanos , Complejos Prematuros Ventriculares/diagnóstico , Complejos Prematuros Ventriculares/epidemiología , Atletas , Electrocardiografía
17.
Front Cardiovasc Med ; 10: 1147581, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37522085

RESUMEN

Introduction: Structural and functional heart abnormalities can be examined non-invasively with cardiac magnetic resonance imaging (CMR). Thanks to the development of MR devices, diagnostic scans can capture more and more relevant information about possible heart diseases. T1 and T2 mapping are such novel technology, providing tissue specific information even without the administration of contrast material. Artificial intelligence solutions based on deep learning have demonstrated state-of-the-art results in many application areas, including medical imaging. More specifically, automated tools applied at cine sequences have revolutionized volumetric CMR reporting in the past five years. Applying deep learning models to T1 and T2 mapping images can similarly improve the efficiency of post-processing pipelines and consequently facilitate diagnostic processes. Methods: In this paper, we introduce a deep learning model for myocardium segmentation trained on over 7,000 raw CMR images from 262 subjects of heterogeneous disease etiology. The data were labeled by three experts. As part of the evaluation, Dice score and Hausdorff distance among experts is calculated, and the expert consensus is compared with the model's predictions. Results: Our deep learning method achieves 86% mean Dice score, while contours provided by three experts on the same data show 90% mean Dice score. The method's accuracy is consistent across epicardial and endocardial contours, and on basal, midventricular slices, with only 5% lower results on apical slices, which are often challenging even for experts. Conclusions: We trained and evaluated a deep learning based segmentation model on 262 heterogeneous CMR cases. Applying deep neural networks to T1 and T2 mapping could similarly improve diagnostic practices. Using the fine details of T1 and T2 mapping images and high-quality labels, the objective of this research is to approach human segmentation accuracy with deep learning.

18.
Clin Cardiol ; 46(9): 1116-1123, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37503875

RESUMEN

BACKGROUND: Iron deficiency (ID) is one of the most common factors that may reduce sports performance, supplementation forms and doses are still not standardized in athletes. Our aim was to assess the iron status of young male basketball players and to study the effect of iron supplementation in a randomized placebo-controlled study. HYPOTHESIS: We hypothesized that due to the higher iron demand of athletes, the 100 µg/L ferritin cut-off may be appropriate to determine the non-anemic ID. METHODS: During a sports cardiology screening, questionnaires, laboratory tests, electrocardiograms, echocardiography exams, and cardiopulmonary exercise tests were performed. Athletes with ID (ferritin <100 µg/L) were randomized into iron and placebo groups. Ferrous sulfate (containing 100 mg elemental iron [II] and 60 mg ascorbic acid) or placebo (50 mg vitamin C) was administered for 3 months. All exams were repeated after the supplementation period. RESULTS: We included 65 (age 15.8 ± 1.7 years) basketball players divided into four age groups. Non-anemic ID was observed in 60 (92%) athletes. After supplementation, ferritin levels were higher in the iron group (75.5 ± 25.9 vs. 54.9 ± 10.4 µg/L, p < .01). Ferritin >100 µg/L level was achieved only in 15% of the athletes. There were no differences in performance between the groups (VO2 max: 53.6 ± 4.3 vs. 54.4 ± 5.7 mL/kg/min, p = .46; peak lactate: 9.1 ± 2.2 vs. 9.1 ± 2.6 mmol/L, p = .90). CONCLUSIONS: As a result of the 3-month iron supplementation, the ferritin levels increased; however, only a small portion of the athletes achieved the target ferritin level, while performance improvement was not detectable.


Asunto(s)
Baloncesto , Deficiencias de Hierro , Masculino , Humanos , Adolescente , Hierro , Ferritinas , Apoferritinas , Suplementos Dietéticos , Hemoglobinas/metabolismo
19.
Front Cardiovasc Med ; 10: 1177347, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37396587

RESUMEN

Introduction: Left atrial appendage (LAA) thrombus is the most common source of embolization in atrial fibrillation (AF). Transesophageal echocardiography (TEE) is the gold standard method for LAA thrombus exclusion. Our pilot study aimed to compare the efficacy of a new non-contrast-enhanced cardiac magnetic resonance (CMR) sequence (BOOST) with TEE for the detection of LAA thrombus and to evaluate the usefulness of BOOST images for planning radiofrequency catheter ablation (RFCA) compared with left atrial (LA) contrast-enhanced computed tomography (CT). We also attempted to assess the patients' subjective experiences with TEE and CMR. Methods: Patients with AF undergoing either electrical cardioversion or RFCA were enrolled. Participants underwent pre-procedural TEE and CMR scans to evaluate LAA thrombus status and pulmonary vein anatomy. Patient experiences with TEE and CMR were assessed using a questionnaire developed by our team. Some patients scheduled for RFCA also had pre-procedural LA contrast-enhanced CT. In such cases, the operating physician was asked to subjectively define the quality of the CT and CMR scan on a scale of 1-10 (1 = worst, 10 = best) and comment on CMR's usefulness in RFCA planning. Results: Seventy-one patients were enrolled. In 94.4%, both TEE and CMR excluded, and in 1 patient, both modalities reported the presence of LAA thrombus. In 1 patient, TEE was inconclusive, but CMR excluded LAA thrombus. In 2 patients, CMR could not exclude the presence of thrombus, but in 1 of those cases, TEE was also indecisive. During TEE, 67%, during CMR, only 1.9% of patients reported pain (p < 0.0001), and 89% would prefer CMR in case of a repeat examination. The quality of the left atrial contrast-enhanced CT scans was better compared with the image quality of the CMR BOOST sequence [8 (7-9) vs. 6 (5-7), p < 0.0001]. Still, the CMR images were useful for procedural planning in 91% of cases. Conclusion: The new CMR BOOST sequence provides appropriate image quality for ablation planning. The sequence might be useful for excluding larger LAA thrombi; however, its accuracy in detecting smaller thrombi is limited. Most patients preferred CMR over TEE in this indication.

20.
Clin Cardiol ; 46(9): 1072-1081, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37357443

RESUMEN

Arrhythmogenic cardiomyopathy (ACM) is a genetic heart muscle disease, structurally characterized by progressive fibro-fatty replacement of the normal myocardium and clinically by ventricular arrhythmias (VAs). Predominantly thanks to the use of cardiac magnetic resonance, we have learnt that the spectrum of the disease encompasses not only the classical right ventricular phenotype, but also biventricular and left dominant variants. Sport activity contributes to the phenotypic expression and progression of ACM and may trigger life-threatening VAs and sudden cardiac death (SCD). We conducted a review of the literature about ACM and its implications in Sport Cardiology and summarized the main findings in this topic. Early identification of affected athletes through preparticipation screening (PPS) is fundamental but, while classical right-ventricular or biventricular phenotypes are usually suspected because of electrocardiogram (ECG) and echocardiographic abnormalities, variants with predominant left ventricular involvement are often characterized by normal ECG and unremarkable echocardiography. Usually the only manifestations of such variants are exercise-induced VAs and for this reason exercise testing may empower the diagnostic yield of the PPS. Patients with ACM are not eligible to competitive sports activity, but low-to-moderate intensity physical activity under medical supervision is possible in most cases.


Asunto(s)
Displasia Ventricular Derecha Arritmogénica , Cardiología , Cardiomiopatías , Deportes , Humanos , Displasia Ventricular Derecha Arritmogénica/diagnóstico , Displasia Ventricular Derecha Arritmogénica/genética , Arritmias Cardíacas/diagnóstico , Arritmias Cardíacas/etiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...