Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Molecules ; 27(18)2022 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-36144552

RESUMEN

This study aimed to produce bioactive protein hydrolysates from undervalued fish, namely Baltic herring, and its filleting by-products. Protein hydrolysates were produced with Alcalase and Flavourzyme to achieve effective hydrolysis. The hydrolysates were evaluated for chemical composition, molecular weight distribution, antioxidant capacity, dipeptidyl-peptidase 4 (DPP4) inhibitory activity, effects on cell proliferation and surface hydrophobicity. The protein content of the hydrolysates was high, from 86% to 91% (dm), while the fat content was low, from 0.3% to 0.4% (dm). The hydrolysates showed high DPP4 inhibition activities with IC50 values from 5.38 mg/mL to 7.92 mg/mL. The scavenging activity of the hydrolysates towards DPPH was low, but an intermediate Folin-Ciocalteu reducing capacity and Cu2+ chelating ability was observed. The solid phase extraction with Sep-Pak C18 cartridges increased the DPP4 inhibition activity and antioxidant capacity, indicating peptides' crucial role in the bioactivities. The cytotoxicity of the hydrolysates was evaluated on the HCT8, IMR90, and A549 cell lines. The hydrolysates inhibited cell growth in the cancer and normal cells, although they did not reduce cell viability and were not lethal. Overall, our results indicate that protein hydrolysates from Baltic herring have potential as health-promoting foods and nutraceuticals, especially for enhancing healthy blood glucose regulation.


Asunto(s)
Dipeptidil Peptidasa 4 , Hidrolisados de Proteína , Animales , Antioxidantes/química , Antioxidantes/farmacología , Glucemia , Dipeptidil Peptidasa 4/química , Peces/metabolismo , Hidrólisis , Péptidos/química , Péptidos/farmacología , Hidrolisados de Proteína/química , Hidrolisados de Proteína/farmacología , Subtilisinas/metabolismo
2.
Foods ; 11(12)2022 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-35741915

RESUMEN

Baltic herring (Clupea harengus membras) pickled in vinegar is a common product in the Nordic countries. Other weak acids are used to cook and preserve fish in other food cultures. The aim of this study was to evaluate the potential of weak acids to produce safe and nutritious pickled fish products with varying sensory properties. The influence of acetic, citric, lactic, malic, and tartaric acids on the preservability and quality of pickled and marinated Baltic herring was studied by measuring microbiological quality, pH, chemical composition, and lipid oxidation and by sensory profiling. Pickling with these acids with pH levels of 3.7-4.2 resulted in pickled Baltic herring products with high microbiological quality. The results of the chemical analysis of the samples indicated that pickling and storage on marinade influenced the chemical composition of fish. The most significant changes in chemical composition were the increase in moisture and decrease in protein content of the samples during storage. Fat content decreased during the storage period in acetic acid and malic acid samples. All tested acids inhibited lipid oxidation for one month, but at three and four month time points, the content of oxidation products increased except in the samples pickled with tartaric acid. The highest oxidation level was observed in the case of citric acid and the lowest with tartaric acid. The results indicate that replacing acetic acid with other weak acids frequently used in the food industry results in pickled and marinated fish products with novel and milder sensory profiles.

3.
Molecules ; 26(23)2021 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-34885703

RESUMEN

Traditionally, arctic Finnish Angelica (Angelica archangelica L.), marsh Labrador tea (Rhododendron tomentosum, syn. Ledum palustre) and common tansy (Tanacetum vulgare) have been used as medicinal herbs in folklore medicine. However, these underutilised plants are a source of, e.g., oil-based compounds, which could benefit many modern applications implemented by the green chemistry extraction methods, as well. We extracted Angelica, marsh Labrador tea and common tansy by non-toxic and recyclable extraction methods, i.e., hydrodistillation and supercritical carbon dioxide (scCO2) extraction; characterised the essential oils (EOs) and scCO2 extracts by combination of gas chromatography and mass spectrometry (GC-MS), and in addition, analysed the antimicrobial properties. As expected for Angelica root and common tansy inflorescence, the scCO2 extraction method produced less amount of volatile compounds compared to hydrodistillation. On the other hand, more coumarins, alkanes, fatty alcohols and fatty acids were obtained. Additionally, sesquiterpenoids palustrol and ledol were predominant compounds in both marsh Labrador tea EO and scCO2 extract. According to our results, however, all the EOs and scCO2 extracts showed broad spectrum of antimicrobial activities against the selected microbes, but the effects were extract-specific. The strongest and broadest antimicrobial activities were performed by marsh Labrador tea scCO2 extract, which showed extremely strong effect on Staphylococcusaureus subsp. aureus and strong effect on Candida albicans.


Asunto(s)
Angelica archangelica/química , Aceites Volátiles/química , Rhododendron/química , Tanacetum/química , Infecciones Bacterianas/tratamiento farmacológico , Infecciones Bacterianas/microbiología , Candida albicans/efectos de los fármacos , Candida albicans/patogenicidad , Dióxido de Carbono/química , Cromatografía de Gases y Espectrometría de Masas , Aceites Volátiles/farmacología , Extractos Vegetales/química , Extractos Vegetales/farmacología , Staphylococcus aureus/efectos de los fármacos , Staphylococcus aureus/patogenicidad
4.
J Biophotonics ; 11(7): e201700225, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29388744

RESUMEN

The ability of noble metal-based nanoparticles (NPs) (Au, Ag) to drastically enhance Raman scattering from molecules placed near metal surface, termed as surface-enhanced Raman scattering (SERS), is widely used for identification of trace amounts of biological materials in biomedical, food safety and security applications. However, conventional NPs synthesized by colloidal chemistry are typically contaminated by nonbiocompatible by-products (surfactants, anions), which can have negative impacts on many live objects under examination (cells, bacteria) and thus decrease the precision of bioidentification. In this article, we explore novel ultrapure laser-synthesized Au-based nanomaterials, including Au NPs and AuSi hybrid nanostructures, as mobile SERS probes in tasks of bacteria detection. We show that these Au-based nanomaterials can efficiently enhance Raman signals from model R6G molecules, while the enhancement factor depends on the content of Au in NP composition. Profiting from the observed enhancement and purity of laser-synthesized nanomaterials, we demonstrate successful identification of 2 types of bacteria (Listeria innocua and Escherichia coli). The obtained results promise less disturbing studies of biological systems based on good biocompatibility of contamination-free laser-synthesized nanomaterials.


Asunto(s)
Escherichia coli/aislamiento & purificación , Oro/química , Listeria/aislamiento & purificación , Nanopartículas del Metal/química , Nanotecnología/instrumentación , Espectrometría Raman , Rayos Láser , Propiedades de Superficie
5.
Anal Bioanal Chem ; 400(4): 1041-9, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21461988

RESUMEN

A bacterial biosensor method for the selective determination of a bioavailable organomercurial compound, methylmercury, is presented. A recombinant luminescent whole-cell bacterial strain responding to total mercury content in samples was used. The bacterial cells were freeze-dried and used as robust, reagent-like compounds, without batch-to-batch variations. In this bacteria-based sensing method, luciferase is used as a reporter, which requires no substrate additions, therefore allowing homogenous, real-time monitoring of the reporter gene expression. A noninducible, constitutively light-producing control bacterial strain was included in parallel for determining the overall cytotoxicity of the samples. The specificity of the total mercury sensor Escherichia coli MC1061 (pmerRBlux) bacterial resistance system toward methylmercury is due to a coexpressed specific enzyme, organomercurial lyase. This enzyme mediates the cleavage of the carbon-mercury bond of methylmercury to yield mercury ions, which induce the reporter genes and produce a self-luminescent cell. The selective analysis of methylmercury with the total mercury strain is achieved by specifically chelating the inorganic mercury species from the sample using an optimized concentration of EDTA as a chelating agent. After the treatment with the chelating agent, a cross-reactivity of 0.2% with ionic mercury was observed at nonphysiological ionic mercury concentrations (100 nM). The assay was optimized to be performed in 3 h but results can already be read after 1 h incubation. Total mercury strain E. coli MC1061 (pmerRBlux) has been shown to be highly sensitive and capable of determining methylmercury at a subnanomolar level in optimized assay conditions with a very high dynamic range of two decades. The limit of detection of 75 ng/l (300 pM) allows measurement of methylmercury even from natural samples.


Asunto(s)
Bacterias/enzimología , Técnicas Biosensibles/métodos , Luminiscencia , Compuestos de Metilmercurio/análisis , Escherichia coli/enzimología , Límite de Detección , Liasas
6.
J Microbiol Methods ; 80(1): 44-8, 2010 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19887091

RESUMEN

In this study, a method for detecting estrogenic mycotoxin residues in milk was developed utilizing bioluminescent whole-cell biosensors. Milk products of various compositions were spiked with the estrogenic mycotoxins zearalenone and its metabolites zearalanone, alpha-zearalanol, beta-zearalanol, alpha-zearalenol and beta-zearalenol. The estrogenic response was detected by a whole-cell biosensor based on a genetically modified Saccharomyces cerevisiae strain that in the presence of an estrogenic compound produces firefly luciferase-enzyme and further light emission within a system provided with D-luciferin substrate. The results show that the yeast sensor reacts to mycotoxins with typical sigmoidal response at nanomolar concentrations. The response differs in different milk products with regard to the fat content of the milk. Due to short assay time of less than 3h and automation the approach can be used as a bioavailability and activity screening method prior to more detailed chemical analysis.


Asunto(s)
Técnicas Biosensibles/métodos , Leche/química , Micotoxinas/análisis , Zearalenona/análisis , Animales , Bovinos , Contaminación de Alimentos/análisis , Genes Reporteros , Micotoxinas/metabolismo , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Zearalenona/metabolismo
7.
Sensors (Basel) ; 8(10): 6433-6447, 2008 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-27873878

RESUMEN

Baker's yeast, Saccharomyces cerevisiae, is the simplest and most well-known representative of eukaryotic cells and thus a convenient model organism for evaluating toxic effects in human cells and tissues. Yeast cell sensors are easy to maintain with short generation times, which makes the analytical method of assessing antifungal toxicity cheap and less-time consuming. In this work, the toxicity of test compounds was assessed in bioassays based on bioluminescence inhibition and on traditional growth inhibition on agar plates. The model organism in both tests was a modified S. cerevisiae sensor strain that produces light when provided with D-luciferin in an insect luciferase reporter gene activity assay. The bioluminescence assay showed toxic effects for yeast cell sensor of 5,6-benzo-flavone, rapamycin, nystatin and cycloheximide at concentrations of nM to µM. In addition, arsenic compounds, cadmium chloride, copper sulfate and lead acetate were shown to be potent non-specific inhibitors of the reporter organism described here. The results from a yeast agar diffusion assay correlated with the bioluminescence assay results.

8.
Int J Food Microbiol ; 115(2): 235-43, 2007 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-17188387

RESUMEN

Knotwood or bark extracts prepared from 30 species of hard and soft wood trees as well as selected pure compounds (lignans, stilbenes and flavonoids) were assayed for their antimicrobial activity against a battery of both gram positive and negative bacteria, yeasts, and filamentous fungi (Bacillus cereus, Staphylococcus aureus, Listeria monocytogenes, Lactobacillus plantarum, Escherichia coli, Salmonella infantis, Pseudomonas fluorescens, Candida albicans, Saccharomyces cerevisiae, Aspergillus fumigatus and Penicillium brevicompactum). By far the most consistent antibacterial and antifungal properties were associated with extracts of Pinus species. These extracts showed also cytotoxicity against a mouse hepatoma cell line. Both antimicrobial and cytotoxic properties correlated with the stilbene content of the extracts. Purified stilbenes showed the most consistent antimicrobial and cytotoxic activities, while purified lignans had marginal effects, only. The results suggest that stilbenes account both for the antimicrobial and cytotoxic properties of Pinus knotwood extracts.


Asunto(s)
Microbiología de Alimentos , Pinus/química , Corteza de la Planta/química , Extractos Vegetales/farmacología , Estilbenos/farmacología , Antibacterianos/farmacología , Antifúngicos/farmacología , Bacterias/efectos de los fármacos , Bacterias/crecimiento & desarrollo , Recuento de Colonia Microbiana , Seguridad de Productos para el Consumidor , Hongos/efectos de los fármacos , Hongos/crecimiento & desarrollo , Pruebas de Sensibilidad Microbiana , Levaduras/efectos de los fármacos , Levaduras/crecimiento & desarrollo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...