Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Front Comput Neurosci ; 16: 849323, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35923915

RESUMEN

Attention deficit hyperactivity disorder (ADHD) is the most common neurodevelopmental disorder in children. Although the involvement of dopamine in this disorder seems to be established, the nature of dopaminergic dysfunction remains controversial. The purpose of this study was to test whether the key response characteristics of ADHD could be simulated by a mechanistic model that combines a decrease in tonic dopaminergic activity with an increase in phasic responses in cortical-striatal loops during learning reinforcement. To this end, we combined a dynamic model of dopamine with a neurocomputational model of the basal ganglia with multiple action channels. We also included a dynamic model of tonic and phasic dopamine release and control, and a learning procedure driven by tonic and phasic dopamine levels. In the model, the dopamine imbalance is the result of impaired presynaptic regulation of dopamine at the terminal level. Using this model, virtual individuals from a dopamine imbalance group and a control group were trained to associate four stimuli with four actions with fully informative reinforcement feedback. In a second phase, they were tested without feedback. Subjects in the dopamine imbalance group showed poorer performance with more variable reaction times due to the presence of fast and very slow responses, difficulty in choosing between stimuli even when they were of high intensity, and greater sensitivity to noise. Learning history was also significantly more variable in the dopamine imbalance group, explaining 75% of the variability in reaction time using quadratic regression. The response profile of the virtual subjects varied as a function of the learning history variability index to produce increasingly severe impairment, beginning with an increase in response variability alone, then accumulating a decrease in performance and finally a learning deficit. Although ADHD is certainly a heterogeneous disorder, these results suggest that typical features of ADHD can be explained by a phasic/tonic imbalance in dopaminergic activity alone.

2.
CPT Pharmacometrics Syst Pharmacol ; 11(11): 1399-1429, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35894182

RESUMEN

Age-related central neurodegenerative diseases, such as Alzheimer's and Parkinson's disease, are a rising public health concern and have been plagued by repeated drug development failures. The complex nature and poor mechanistic understanding of the etiology of neurodegenerative diseases has hindered the discovery and development of effective disease-modifying therapeutics. Quantitative systems pharmacology models of neurodegeneration diseases may be useful tools to enhance the understanding of pharmacological intervention strategies and to reduce drug attrition rates. Due to the similarities in pathophysiological mechanisms across neurodegenerative diseases, especially at the cellular and molecular levels, we envision the possibility of structural components that are conserved across models of neurodegenerative diseases. Conserved structural submodels can be viewed as building blocks that are pieced together alongside unique disease components to construct quantitative systems pharmacology (QSP) models of neurodegenerative diseases. Model parameterization would likely be different between the different types of neurodegenerative diseases as well as individual patients. Formulating our mechanistic understanding of neurodegenerative pathophysiology as a mathematical model could aid in the identification and prioritization of drug targets and combinatorial treatment strategies, evaluate the role of patient characteristics on disease progression and therapeutic response, and serve as a central repository of knowledge. Here, we provide a background on neurodegenerative diseases, highlight hallmarks of neurodegeneration, and summarize previous QSP models of neurodegenerative diseases.


Asunto(s)
Enfermedades Neurodegenerativas , Enfermedad de Parkinson , Farmacología , Humanos , Enfermedades Neurodegenerativas/tratamiento farmacológico , Farmacología en Red , Enfermedad de Parkinson/tratamiento farmacológico , Progresión de la Enfermedad , Modelos Teóricos
3.
Int J Mol Sci ; 23(7)2022 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-35408811

RESUMEN

Cognitive flexibility is essential to modify our behavior in a non-stationary environment and is often explored by reversal learning tasks. The basal ganglia (BG) dopaminergic system, under a top-down control of the pre-frontal cortex, is known to be involved in flexible action selection through reinforcement learning. However, how adaptive dopamine changes regulate this process and learning mechanisms for training the striatal synapses remain open questions. The current study uses a neurocomputational model of the BG, based on dopamine-dependent direct (Go) and indirect (NoGo) pathways, to investigate reinforcement learning in a probabilistic environment through a task that associates different stimuli to different actions. Here, we investigated: the efficacy of several versions of the Hebb rule, based on covariance between pre- and post-synaptic neurons, as well as the required control in phasic dopamine changes crucial to achieving a proper reversal learning. Furthermore, an original mechanism for modulating the phasic dopamine changes is proposed, assuming that the expected reward probability is coded by the activity of the winner Go neuron before a reward/punishment takes place. Simulations show that this original formulation for an automatic phasic dopamine control allows the achievement of a good flexible reversal even in difficult conditions. The current outcomes may contribute to understanding the mechanisms for active control of dopamine changes during flexible behavior. In perspective, it may be applied in neuropsychiatric or neurological disorders, such as Parkinson's or schizophrenia, in which reinforcement learning is impaired.


Asunto(s)
Dopamina , Aprendizaje Inverso , Ganglios Basales/metabolismo , Cuerpo Estriado/metabolismo , Dopamina/metabolismo , Modelos Neurológicos , Aprendizaje Inverso/fisiología
4.
J Pharmacokinet Pharmacodyn ; 48(1): 133-148, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33084988

RESUMEN

Levodopa is considered the gold standard treatment of Parkinson's disease. Although very effective in alleviating symptoms at their onset, its chronic use with the progressive neuronal denervation in the basal ganglia leads to a decrease in levodopa's effect duration and to the appearance of motor complications. This evolution challenges the establishment of optimal regimens to manage the symptoms as the disease progresses. Based on up-to-date pathophysiological and pharmacological knowledge, we developed an integrative model for Parkinson's disease to evaluate motor function in response to levodopa treatment as the disease progresses. We combined a pharmacokinetic model of levodopa to a model of dopamine's kinetics and a neurocomputational model of basal ganglia. The parameter values were either measured directly or estimated from human and animal data. The concentrations and behaviors predicted by our model were compared to available information and data. Using this model, we were able to predict levodopa plasma concentration, its related dopamine concentration in the brain and the response performance of a motor task for different stages of disease.


Asunto(s)
Ganglios Basales/efectos de los fármacos , Levodopa/farmacocinética , Modelos Neurológicos , Enfermedad de Parkinson/tratamiento farmacológico , Transmisión Sináptica/efectos de los fármacos , Ganglios Basales/metabolismo , Ganglios Basales/fisiopatología , Simulación por Computador , Progresión de la Enfermedad , Dopamina/metabolismo , Humanos , Levodopa/administración & dosificación , Actividad Motora/efectos de los fármacos , Actividad Motora/fisiología , Enfermedad de Parkinson/fisiopatología
5.
Chaos ; 30(9): 093146, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-33003902

RESUMEN

The effect of levodopa in alleviating the symptoms of Parkinson's disease is altered in a highly nonlinear manner as the disease progresses. This can be attributed to different compensation mechanisms taking place in the basal ganglia where the dopaminergic neurons are progressively lost. This alteration in the effect of levodopa complicates the optimization of a drug regimen. The present work aims at investigating the nonlinear dynamics of Parkinson's disease and its therapy through mechanistic mathematical modeling. Using a holistic approach, a pharmacokinetic model of levodopa was combined to a dopamine dynamics and a neurocomputational model of basal ganglia. The influence of neuronal death on these different mechanisms was also integrated. Using this model, we were able to investigate the nonlinear relationships between the levodopa plasma concentration, the dopamine brain concentration, and a response to a motor task. Variations in dopamine concentrations in the brain for different levodopa doses were also studied. Finally, we investigated the narrowing of a levodopa therapeutic index with the progression of the disease as a result of these nonlinearities. In conclusion, various consequences of nonlinear dynamics in Parkinson's disease treatment were studied by developing an integrative model. This model paves the way toward individualization of a dosing regimen. Using sensor based information, the parameters of the model could be fitted to individual data to propose optimal individual regimens.


Asunto(s)
Levodopa , Enfermedad de Parkinson , Antiparkinsonianos/farmacología , Ganglios Basales , Progresión de la Enfermedad , Humanos , Levodopa/farmacología , Enfermedad de Parkinson/tratamiento farmacológico
6.
Chaos ; 30(8): 083139, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32872807

RESUMEN

Motor fluctuations and dyskinesias are severe complications of Parkinson's disease (PD), especially evident at its advanced stage, under long-term levodopa therapy. Despite their strong clinical prevalence, the neural origin of these motor symptoms is still a subject of intense debate. In this work, a non-linear deterministic neurocomputational model of the basal ganglia (BG), inspired by biology, is used to provide more insights into possible neural mechanisms at the basis of motor complications in PD. In particular, the model is used to simulate the finger tapping task. The model describes the main neural pathways involved in the BG to select actions [the direct or Go, the indirect or NoGo, and the hyperdirect pathways via the action of the sub-thalamic nucleus (STN)]. A sensitivity analysis is performed on some crucial model parameters (the dopamine level, the strength of the STN mechanism, and the strength of competition among different actions in the motor cortex) at different levels of synapses, reflecting major or minor motor training. Depending on model parameters, results show that the model can reproduce a variety of clinically relevant motor patterns, including normokinesia, bradykinesia, several attempts before movement, freezing, repetition, and also irregular fluctuations. Motor symptoms are, especially, evident at low or high dopamine levels, with excessive strength of the STN and with weak competition among alternative actions. Moreover, these symptoms worsen if the synapses are subject to insufficient learning. The model may help improve the comprehension of motor complications in PD and, ultimately, may contribute to the treatment design.


Asunto(s)
Enfermedad de Parkinson , Ganglios Basales , Humanos , Movimiento , Vías Nerviosas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...