RESUMEN
CONTEXT: The CO 2 activation by low-valent group 14 catalysts encompasses the rupture of varied covalent bonds in a single transition state through a concerted pathway. The bond between the central main group atom and the hydride in the complex is elongated to trigger the formation of the C-H bond with CO 2 accompanied by the concomitant formation of the E-O bond between the complex and CO 2 to lead the corresponding formate product. Prior studies have established that besides the apolar nature of CO 2 , its initial interaction with the complex is primarily governed by electrostatic interactions. Notably, other stabilizing interactions and the transfer of charge between catalysts and CO 2 during the initial phases of the reaction have been ignored. In this study, we have quantified the non-covalent interactions and charge transfer that facilitate the activation of CO 2 by group 14 main group complex. Our findings indicate that electrostatic interactions predominantly stabilize the complex and CO 2 in the reactant region. However, induction energy becomes the main stabilizing force as the reaction progresses towards the transition state, surpassing electrostatics. Induction contributes about 50% to the stabilization at the transition state, followed by electrostatics (40%) and dispersion interactions (10%). Atomic charges calculated with the minimal basis iterative stockholder (MBIS) method reveal larger charge transfer for the back-side reaction path in which CO 2 approaches the catalysts in contrast to the front-side approach. Notably, it was discovered that a minor initial bending of CO 2 to approximately 176 ∘ initiates the charge transfer process for all systems. Furthermore, our investigation of group 14 elements demonstrates a systematic reduction in both activation energies and charge transfer to CO 2 while descending in group 14. METHODS: All studied reactions were characterized along the reaction coordinate obtained with the intrinsic reaction coordinate (IRC) methodology at the M06-2X/6-31 g(d,p) level of theory. Gibbs free energy in toluene was computed using electronic energies at the DLPNO-CCSD(T)/cc-pVTZ-SSD(E) level of theory. Vibrational and translational entropy corrections were applied to provide a more accurate description of the obtained Gibbs free energies. To better characterize the changes in the reaction coordinate for all reactions, the reaction force analysis (RFA) has been employed. It enables the partition of the reaction coordinate into the reactant, transition state, and product regions where different stages of the mechanism occur. A detailed characterization of the main non-covalent driving forces in the initial stages of the activation of CO 2 by low-valent group 14 complexes was performed using symmetry-adapted perturbation theory (SAPT). The SAPT0-CT/def2-SVP method was employed for these computations. Charge transfer descriptors based on atomic population using the MBIS scheme were also obtained to complement the SAPT analyses.
RESUMEN
GBasis is a free and open-source Python library for molecular property computations based on Gaussian basis functions in quantum chemistry. Specifically, GBasis allows one to evaluate functions expanded in Gaussian basis functions (including molecular orbitals, electron density, and reduced density matrices) and to compute functionals of Gaussian basis functions (overlap integrals, one-electron integrals, and two-electron integrals). Unique features of GBasis include supporting evaluation and analytical integration of arbitrary-order derivatives of the density (matrices), computation of a broad range of (screened) Coulomb interactions, and evaluation of overlap integrals of arbitrary numbers of Gaussians in arbitrarily high dimensions. For circumstances where the flexibility of GBasis is less important than high performance, a seamless Python interface to the Libcint C package is provided. GBasis is designed to be easy to use, maintain, and extend following many standards of sustainable software development, including code-quality assurance through continuous integration protocols, extensive testing, comprehensive documentation, up-to-date package management, and continuous delivery. This article marks the official release of the GBasis library, outlining its features, examples, and development.
RESUMEN
Carboxy-biotin serves as a coenzyme in certain carboxylases, exhibiting the remarkable capability to transfer a carboxy group to specific substrates. This process is made possible by the presence of biotin, a unique molecule that consists of a sulfur-containing tetrahydrothiophene ring fused to a ureido group. It is covalently attached to the enzyme via a flexible linker, allowing for its functionality. Biotin-dependent carboxylases consist of two distinct domains. The first domain (BC) facilitates biotin carboxylation by utilizing ATP, while the second domain (CT) transfers CO2 to the substrate. The process of ATP-dependent carboxylation using bicarbonate in the biotin carboxylase domain (BC) is well-known. However, the precise mechanism by which CO2 is released in the carboxyltransferase domain (CT) is still not fully understood. We employed advanced computational chemistry methods to investigate the decarboxylation process of carboxy-biotin in various molecular environments and different protonation states. Regardless of the polarity of the molecular surroundings, decarboxylation only occurs spontaneously in the protonated form. To determine the protonation state of biotin in different environments, we established an accurate computational chemistry method for calculating the pKa value of carboxy-biotin, reaching sub-kcal/mol accuracy. Based on our findings, nonpolar environments, such as the active site of the carboxyltransferase domain, have the ability to cause the spontaneous release of CO2 from carboxy-biotin. The CO2 release takes place spontaneously from protonated carboxy-biotin, promoting the carboxylation of substrates.
Asunto(s)
Biotina , Dióxido de Carbono , Biotina/química , Biotina/metabolismo , Dióxido de Carbono/química , Dióxido de Carbono/metabolismoRESUMEN
Grid is a free and open-source Python library for constructing numerical grids to integrate, interpolate, and differentiate functions (e.g., molecular properties), with a strong emphasis on facilitating these operations in computational chemistry and conceptual density functional theory. Although designed, maintained, and released as a stand-alone Python library, Grid was originally developed for molecular integration, interpolation, and solving the Poisson equation in the HORTON and ChemTools packages. Grid is designed to be easy to use, extend, and maintain; this is why we use Python and adopt many principles of modern software development, including comprehensive documentation, extensive testing, continuous integration/delivery protocols, and package management. We leverage popular scientific packages, such as NumPy and SciPy, to ensure high efficiency and optimized performance in grid development. This article is the official release note of the Grid library showcasing its unique functionality and scope.
RESUMEN
HORTON is a free and open-source electronic-structure package written primarily in Python 3 with some underlying C++ components. While HORTON's development has been mainly directed by the research interests of its leading contributing groups, it is designed to be easily modified, extended, and used by other developers of quantum chemistry methods or post-processing techniques. Most importantly, HORTON adheres to modern principles of software development, including modularity, readability, flexibility, comprehensive documentation, automatic testing, version control, and quality-assurance protocols. This article explains how the principles and structure of HORTON have evolved since we started developing it more than a decade ago. We review the features and functionality of the latest HORTON release (version 2.3) and discuss how HORTON is evolving to support electronic structure theory research for the next decade.
RESUMEN
The use of computer simulation for binding affinity prediction is growing in drug discovery. However, its wider use is constrained by the accuracy of the free energy calculations. The key sources of error are the force fields used to depict molecular interactions and insufficient sampling of the configurational space. To improve the quality of the force field, we developed a Python-based computational workflow. The workflow described here uses the minimal basis iterative stockholder (MBIS) method to determine atomic charges and Lennard-Jones parameters from the polarized molecular density. This is done by performing electronic structure calculations on various configurations of the ligand when it is both bound and unbound. In addition, we validated a simulation procedure that accounts for the protein and ligand degrees of freedom to precisely calculate binding free energies. This was achieved by comparing the self-adjusted mixture sampling and nonequilibrium thermodynamic integration methods using various protein and ligand conformations. The accuracy of predicting binding affinity is improved by using MBIS-derived force field parameters and a validated simulation procedure. This improvement surpasses the chemical precision for the eight aromatic ligands, reaching a root-mean-square error of 0.7 kcal/mol.
Asunto(s)
Muramidasa , Unión Proteica , Termodinámica , Muramidasa/química , Muramidasa/metabolismo , Ligandos , Electrones , Bacteriófago T4/enzimología , Mutación , Conformación Proteica , Simulación de Dinámica Molecular , Modelos MolecularesRESUMEN
The conversion of CO2 by enzymes such as carbonic anhydrase or carboxylases plays a crucial role in many biological processes. However, in situ methods following the microscopic details of CO2 conversion at the active site are limited. Here, we used infrared spectroscopy to study the interaction of CO2, water, bicarbonate, and other reactants with ß-carbonic anhydrase from Escherichia coli (EcCA) and crotonyl-CoA carboxylase/reductase from Kitasatospora setae (KsCcr), two of the fastest CO2-converting enzymes in nature. Our data reveal that KsCcr possesses a so far unknown metal-independent CA-like activity. Site-directed mutagenesis of conserved active site residues combined with molecular dynamics simulations tracing CO2 distributions in the active site of KsCCr identify an 'activated' water molecule forming the hydroxyl anion that attacks CO2 and yields bicarbonate (HCO3-). Computer simulations also explain why substrate binding inhibits the anhydrase activity. Altogether, we demonstrate how in situ infrared spectroscopy combined with molecular dynamics simulations provides a simple yet powerful new approach to investigate the atomistic reaction mechanisms of different enzymes with CO2.
RESUMEN
Crotonyl-CoA carboxylase/reductase (Ccr) is one of the fastest CO2 fixing enzymes and has become part of efficient artificial CO2-fixation pathways in vitro, paving the way for future applications. The underlying mechanism of its efficiency, however, is not yet completely understood. X-ray structures of different intermediates in the catalytic cycle reveal tetramers in a dimer of dimers configuration with two open and two closed active sites. Upon binding a substrate, this active site changes its conformation from the open state to the closed state. It is challenging to predict how these coupled conformational changes will alter the CO2 binding affinity to the reaction's active site. To determine whether the open or closed conformations of Ccr affect binding of CO2 to the active site, we performed all-atom molecular simulations of the various conformations of Ccr. The open conformation without a substrate showed the highest binding affinity. The CO2 binding sites are located near the catalytic relevant Asn81 and His365 residues and in an optimal position for CO2 fixation. Furthermore, they are unaffected by substrate binding, and CO2 molecules stay in these binding sites for a longer time. Longer times at these reactive binding sites facilitate CO2 fixation through the nucleophilic attack of the reactive enolate in the closed conformation. We previously demonstrated that the Asn81Leu variant cannot fix CO2. Simulations of the Asn81Leu variant explain the loss of activity through the removal of the Asn81 and His365 binding sites. Overall, our findings show that the conformational dynamics of the enzyme controls CO2 binding. Conformational changes in Ccr increase the level of CO2 in the open subunit before the substrate is bound, the active site closes, and the reaction starts. The full catalytic Ccr cycle alternates among CO2 addition, conformational change, and chemical reaction in the four subunits of the tetramer coordinated by communication between the two dimers.
Asunto(s)
Dióxido de Carbono , Carboxiliasas , Sitios de Unión , Dominio Catalítico , Conformación Proteica , Cristalografía por Rayos XRESUMEN
Hydride transfer reactions involving 1,4-dihydropyridines play a central role in bioorganic chemistry as they represent an important share of redox metabolism. For this class of reactions, direct hydride transfer is the commonly accepted mechanism; however, an Alder-Ene-like pathway has been proposed as a plausible alternative. The reaction between 1,4-ditrimethylsilyl-1,4-dihydropyridine and α,ß-unsaturated nitriles is a solid candidate for this latter pathway. In this work, we perform high level ab initio and density functional theory computations to characterize the mechanism of this reaction, taking into account diverse reaction paths, and evaluating the effect of solvent polarity and variations in the chemical structure. Our analysis explains the stereochemical aspects of the reaction, characterizing the up to now unresolved spatial configurations of the predominant products, and may contribute to the understanding of enzymatic reactions involving NADP(H). The reactions are found to proceed in an asynchronous fashion, with transition states that display significant aromatic features. With this observation in mind, Alder-Ene and direct hydride transfer pathways can be understood as two extremes of a continuous mechanistic spectrum for this kind of reaction, with the analyzed systems located approximately equidistant from both ends.
Asunto(s)
Dihidropiridinas , Nitrilos , Nitrilos/química , Dihidropiridinas/química , Oxidación-ReducciónRESUMEN
Binding affinity prediction by means of computer simulation has been increasingly incorporated in drug discovery projects. Its wide application, however, is limited by the prediction accuracy of the free energy calculations. The main error sources are force fields used to describe molecular interactions and incomplete sampling of the configurational space. Organic host-guest systems have been used to address force field quality because they share similar interactions found in ligands and receptors, and their rigidity facilitates configurational sampling. Here, we test the binding free energy prediction accuracy for 14 guests with an aromatic or adamantane core and the CB7 host using molecular electron density derived nonbonded force field parameters. We developed a computational workflow written in Python to derive atomic charges and Lennard-Jones parameters with the Minimal Basis Iterative Stockholder method using the polarized electron density of several configurations of each guest in the bound and unbound states. The resulting nonbonded force field parameters improve binding affinity prediction, especially for guests with an adamantane core in which repulsive exchange and dispersion interactions to the host dominate.
Asunto(s)
Adamantano , Electrones , Adamantano/química , Simulación por Computador , Ligandos , TermodinámicaRESUMEN
Enoyl-CoA carboxylases/reductases (ECRs) are some of the most efficient CO2-fixing enzymes described to date. However, the molecular mechanisms underlying the extraordinary catalytic activity of ECRs on the level of the protein assembly remain elusive. Here we used a combination of ambient-temperature X-ray free electron laser (XFEL) and cryogenic synchrotron experiments to study the structural organization of the ECR from Kitasatospora setae. The K. setae ECR is a homotetramer that differentiates into a pair of dimers of open- and closed-form subunits in the catalytically active state. Using molecular dynamics simulations and structure-based mutagenesis, we show that catalysis is synchronized in the K. setae ECR across the pair of dimers. This conformational coupling of catalytic domains is conferred by individual amino acids to achieve high CO2-fixation rates. Our results provide unprecedented insights into the dynamic organization and synchronized inter- and intrasubunit communications of this remarkably efficient CO2-fixing enzyme during catalysis.
RESUMEN
We develop a variational procedure for the iterative Hirshfeld (HI) partitioning scheme. The main practical advantage of having a variational framework is that it provides a formal and straightforward approach for imposing constraints (e.g., fixed charges on certain atoms or molecular fragments) when computing HI atoms and their properties. Unlike many other variants of the Hirshfeld partitioning scheme, HI charges do not arise naturally from the information-theoretic framework, but only as a reverse-engineered construction of the objective function. However, the procedure we use is quite general and could be applied to other problems as well. We also prove that there is always at least one solution to the HI equations, but we could not prove that its self-consistent equations would always converge for any given initial pro-atom charges. Our numerical assessment of the constrained iterative Hirshfeld method shows that it satisfies many desirable traits of atoms in molecules and has the potential to surpass existing approaches for adding constraints when computing atomic properties.
RESUMEN
Host-guest systems are widely used in benchmarks as model systems to improve computational methods for absolute binding free energy predictions. Recent advances in sampling algorithms for alchemical free energy calculations and the increase in computational power have made their binding affinity prediction primarily dependent on the quality of the force field. Here, we propose a new methodology to derive the atomic charges of host-guest systems based on quantum mechanics/molecular mechanics calculations and minimal basis iterative stockholder (MBIS) partitioning of the polarized electron density. A newly developed interface between the OpenMM and ORCA software packages provides D-MBIS charges that represent the guest's average electrostatic interactions in the hosts or the solvent. The simulation workflow also calculates the average energy required to polarize the guest in the bound and unbound state. Alchemical free energy calculations using the general Amber force field parameters with D-MBIS charges improve the binding affinity prediction of six guests bound to two octa acid hosts compared to the AM1-BCC charge set after correction with the average energetic polarization cost. This correction originates from the difference in potential energy that is required to polarize the guest in the bound and unbound state and contributes significantly to the binding affinity of anionic guests.
Asunto(s)
Simulación de Dinámica Molecular , Entropía , Fenómenos Físicos , Solventes , TermodinámicaRESUMEN
Glucose-6-phosphate dehydrogenase (G6PD) deficiency is the most common blood disorder, presenting multiple symptoms, including hemolytic anemia. It affects 400 million people worldwide, with more than 160 single mutations reported in G6PD. The most severe mutations (about 70) are classified as class I, leading to more than 90% loss of activity of the wild-type G6PD. The crystal structure of G6PD reveals these mutations are located away from the active site, concentrating around the noncatalytic NADP+-binding site and the dimer interface. However, the molecular mechanisms of class I mutant dysfunction have remained elusive, hindering the development of efficient therapies. To resolve this, we performed integral structural characterization of five G6PD mutants, including four class I mutants, associated with the noncatalytic NADP+ and dimerization, using crystallography, small-angle X-ray scattering (SAXS), cryogenic electron microscopy (cryo-EM), and biophysical analyses. Comparisons with the structure and properties of the wild-type enzyme, together with molecular dynamics simulations, bring forward a universal mechanism for this severe G6PD deficiency due to the class I mutations. We highlight the role of the noncatalytic NADP+-binding site that is crucial for stabilization and ordering two ß-strands in the dimer interface, which together communicate these distant structural aberrations to the active site through a network of additional interactions. This understanding elucidates potential paths for drug development targeting G6PD deficiency.
Asunto(s)
Coenzimas/química , Glucosafosfato Deshidrogenasa/química , Leucina/química , Mutación , NADP/química , Prolina/química , Sitios de Unión , Clonación Molecular , Coenzimas/metabolismo , Cristalografía por Rayos X , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Glucosafosfato Deshidrogenasa/genética , Glucosafosfato Deshidrogenasa/metabolismo , Deficiencia de Glucosafosfato Deshidrogenasa/enzimología , Deficiencia de Glucosafosfato Deshidrogenasa/genética , Deficiencia de Glucosafosfato Deshidrogenasa/patología , Humanos , Cinética , Leucina/metabolismo , Modelos Moleculares , Simulación de Dinámica Molecular , NADP/metabolismo , Prolina/metabolismo , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Multimerización de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Especificidad por SustratoRESUMEN
IOData is a free and open-source Python library for parsing, storing, and converting various file formats commonly used by quantum chemistry, molecular dynamics, and plane-wave density-functional-theory software programs. In addition, IOData supports a flexible framework for generating input files for various software packages. While designed and released for stand-alone use, its original purpose was to facilitate the interoperability of various modules in the HORTON and ChemTools software packages with external (third-party) molecular quantum chemistry and solid-state density-functional-theory packages. IOData is designed to be easy to use, maintain, and extend; this is why we wrote IOData in Python and adopted many principles of modern software development, including comprehensive documentation, extensive testing, continuous integration/delivery protocols, and package management. This article is the official release note of the IOData library.
RESUMEN
Ribulose 1,5-bisphosphate carboxylase-oxygenase (RuBisCO) is the main enzyme involved in atmospheric carbon dioxide (CO2 ) fixation in the biosphere. This enzyme catalyzes a set of five chemical steps that take place in the same active-site within magnesium (II) coordination sphere. Here, a set of electronic structure benchmark calculations have been carried out on a reaction path proposed by Gready et al. by means of the projector-based embedding approach. Activation and reaction energies for all main steps catalyzed by RuBisCO have been calculated at the MP2, SCS-MP2, CCSD, and CCSD(T)/aug-cc-pVDZ and cc-pVDZ levels of theory. The treatment of the magnesium cation with post-HF methods is explored to determine the nature of its involvement in the mechanism. With the high-level ab initio values as a reference, we tested the performance of a set of density functional theory (DFT) exchange-correlation (xc) functionals in reproducing the reaction energetics of RuBisCO carboxylase activity on a set of model fragments. Different DFT xc-functionals show large variation in activation and reaction energies. Activation and reaction energies computed at the B3LYP level are close to the reference SCS-MP2 results for carboxylation, hydration and protonation reactions. However, for the carbon-carbon bond dissociation reaction, B3LYP and other functionals give results that differ significantly from the ab initio reference values. The results show the applicability of the projector-based embedding approach to metalloenzymes. This technique removes the uncertainty associated with the selection of different DFT xc-functionals and so can overcome some of inherent limitations of DFT calculations, complementing, and potentially adding to modeling of enzyme reaction mechanisms with DFT methods.
Asunto(s)
Dióxido de Carbono/química , Ribulosa-Bifosfato Carboxilasa/química , Ciclo del Carbono , Catálisis , Dominio Catalítico , Teoría Funcional de la Densidad , Electrónica , Metaloproteínas/química , Modelos Moleculares , Conformación Molecular , Unión ProteicaRESUMEN
Local reactivity descriptors such as atom-condensed Fukui functions are promising computational tools to study chemical reactivity at specific sites within a molecule. Their applications have been mainly focused on isolated molecules in their most stable conformation without considering the effects of the surroundings. Here we propose to combine quantum mechanics/molecular mechanics Born-Oppenheimer molecular dynamics simulations to obtain the microstates (configurations) of a molecular system using different representations of the molecular environment and calculate Boltzmann-weighted atom-condensed local reactivity descriptors based on conceptual density functional theory. Our approach takes the conformational fluctuations of the molecular system and the polarization of its electron density by the environment into account, allowing us to analyze the effect of the molecular environment on reactivity. In this contribution, we apply the method mentioned above to the catalytic fixation of carbon dioxide by crotonyl-CoA carboxylase/reductase and study if the enzyme alters the reactivity of its substrate compared with an aqueous solution. Our main result is that the protein environment activates the substrate by the elimination of solute-solvent hydrogen bonds from aqueous solution in the two elementary steps of the reaction mechanism: the nucleophilic attack of a hydride anion from NADPH on the α,ß-unsaturated thioester and the electrophilic attack of carbon dioxide on the formed enolate species.
Asunto(s)
Dióxido de Carbono/química , Ligasas de Carbono-Carbono/química , Acilcoenzima A/química , Teoría Funcional de la Densidad , Enlace de Hidrógeno , Modelos Químicos , Simulación de Dinámica Molecular , NADP/químicaRESUMEN
In molecular modeling the description of the interactions between molecules forms the basis for a correct prediction of macroscopic observables. Here, we derive atomic charges from the implicitly polarized electron density of 11 molecules in the SAMPL6 challenge using the Hirshfeld-I and Minimal Basis Set Iterative Stockholder (MBIS) partitioning method. These atomic charges combined with other parameters in the GAFF force field and different water/octanol models were then used in alchemical free energy calculations to obtain hydration and solvation free energies, which after correction for the polarization cost, result in the blind prediction of the partition coefficient. From the tested partitioning methods and water models the S-MBIS atomic charges with the TIP3P water model presented the smallest deviation from the experiment. Conformational dependence of the free energies and the energetic cost associated with the polarization of the electron density are discussed.
Asunto(s)
Octanoles/química , Solventes/química , Termodinámica , Agua/química , Entropía , Modelos Químicos , Conformación Molecular , Simulación de Dinámica MolecularRESUMEN
Carboxylases are biocatalysts that capture and convert carbon dioxide (CO2) under mild conditions and atmospheric concentrations at a scale of more than 400 Gt annually. However, how these enzymes bind and control the gaseous CO2 molecule during catalysis is only poorly understood. One of the most efficient classes of carboxylating enzymes are enoyl-CoA carboxylases/reductases (Ecrs), which outcompete the plant enzyme RuBisCO in catalytic efficiency and fidelity by more than an order of magnitude. Here we investigated the interactions of CO2 within the active site of Ecr from Kitasatospora setae Combining experimental biochemistry, protein crystallography, and advanced computer simulations we show that 4 amino acids, N81, F170, E171, and H365, are required to create a highly efficient CO2-fixing enzyme. Together, these 4 residues anchor and position the CO2 molecule for the attack by a reactive enolate created during the catalytic cycle. Notably, a highly ordered water molecule plays an important role in an active site that is otherwise carefully shielded from water, which is detrimental to CO2 fixation. Altogether, our study reveals unprecedented molecular details of selective CO2 binding and C-C-bond formation during the catalytic cycle of nature's most efficient CO2-fixing enzyme. This knowledge provides the basis for the future development of catalytic frameworks for the capture and conversion of CO2 in biology and chemistry.
Asunto(s)
Aminoácidos/química , Dióxido de Carbono/química , Ácido Graso Desaturasas/química , Modelos Moleculares , Aminoácidos/genética , Aminoácidos/metabolismo , Dióxido de Carbono/metabolismo , Proteínas Portadoras/química , Catálisis , Dominio Catalítico/genética , Enzimas/química , Ácido Graso Desaturasas/metabolismo , Streptomycetaceae/química , Streptomycetaceae/enzimologíaRESUMEN
Developing new carbon dioxide (CO2) fixing enzymes is a prerequisite to create new biocatalysts for diverse applications in chemistry, biotechnology and synthetic biology. Here we used bioinformatics to identify a "sleeping carboxylase function" in the superfamily of medium-chain dehydrogenases/reductases (MDR), i.e. enzymes that possess a low carboxylation side activity next to their original enzyme reaction. We show that propionyl-CoA synthase from Erythrobacter sp. NAP1, as well as an acrylyl-CoA reductase from Nitrosopumilus maritimus possess carboxylation yields of 3 ± 1 and 4.5 ± 0.9%. We use rational design to engineer these enzymes further into carboxylases by increasing interactions of the proteins with CO2 and suppressing diffusion of water to the active site. The engineered carboxylases show improved CO2-binding and kinetic parameters comparable to naturally existing CO2-fixing enzymes. Our results provide a strategy to develop novel CO2-fixing enzymes and shed light on the emergence of natural carboxylases during evolution.