Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Alzheimers Res Ther ; 15(1): 134, 2023 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-37550750

RESUMEN

BACKGROUND: Obstructive sleep apnoea (OSA) has a high prevalence in patients with Alzheimer's disease (AD). Both conditions have been shown to be associated with lipid dysregulation. However, the relationship between OSA severity and alterations in lipid metabolism in the brains of patients with AD has yet to be fully elucidated. In this context, we examined the cerebrospinal fluid (CSF) lipidome of patients with suspected OSA to identify potential diagnostic biomarkers and to provide insights into the pathophysiological mechanisms underlying the effect of OSA on AD. METHODS: The study included 91 consecutive AD patients who underwent overnight polysomnography (PSG) to diagnose severe OSA (apnoea-hypopnea index ≥ 30/h). The next morning, CSF samples were collected and analysed by liquid chromatography coupled to mass spectrometry in an LC-ESI-QTOF-MS/MS platform. RESULTS: The CSF levels of 11 lipid species were significantly different between AD patients with (N = 38) and without (N = 58) severe OSA. Five lipids (including oxidized triglyceride OxTG(57:2) and four unknown lipids) were significantly correlated with specific PSG measures of OSA severity related to sleep fragmentation and hypoxemia. Our analyses revealed a 4-lipid signature (including oxidized ceramide OxCer(40:6) and three unknown lipids) that provided an accuracy of 0.80 (95% CI: 0.71-0.89) in the detection of severe OSA. These lipids increased the discriminative power of the STOP-Bang questionnaire in terms of the area under the curve (AUC) from 0.61 (0.50-0.74) to 0.85 (0.71-0.93). CONCLUSIONS: Our results reveal a CSF lipidomic fingerprint that allows the identification of AD patients with severe OSA. Our findings suggest that an increase in central nervous system lipoxidation may be the principal mechanism underlying the association between OSA and AD.


Asunto(s)
Enfermedad de Alzheimer , Apnea Obstructiva del Sueño , Humanos , Enfermedad de Alzheimer/líquido cefalorraquídeo , Lipidómica , Espectrometría de Masas en Tándem , Apnea Obstructiva del Sueño/diagnóstico , Apnea Obstructiva del Sueño/complicaciones , Lípidos , Encuestas y Cuestionarios
2.
Alzheimers Res Ther ; 14(1): 163, 2022 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-36329512

RESUMEN

BACKGROUND: Obstructive sleep apnoea (OSA) is the most frequent form of sleep-disordered breathing in patients with Alzheimer's disease (AD). Available evidence demonstrates that both conditions are independently associated with alterations in lipid metabolism. However, it is unknown whether the expression of lipids is different between AD patients with and without severe OSA. In this context, we examined the plasma lipidome of patients with suspected OSA, aiming to identify potential diagnostic biomarkers and to provide insights into the pathophysiological mechanisms underlying the disease. METHODS: The study included 103 consecutive patients from the memory unit of our institution with a diagnosis of AD. The individuals were subjected to overnight polysomnography (PSG) to diagnose severe OSA (apnoea-hypopnea index ≥30/h), and blood was collected the following morning. Untargeted plasma lipidomic profiling was performed using liquid chromatography coupled with mass spectrometry. RESULTS: We identified a subset of 44 lipids (mainly phospholipids and glycerolipids) that were expressed differently between patients with AD and severe and nonsevere OSA. Among the lipids in this profile, 30 were significantly correlated with specific PSG measures of OSA severity related to sleep fragmentation and hypoxemia. Machine learning analyses revealed a 4-lipid signature (phosphatidylcholine PC(35:4), cis-8,11,14,17-eicosatetraenoic acid and two oxidized triglycerides (OxTG(58:5) and OxTG(62:12)) that provided an accuracy (95% CI) of 0.78 (0.69-0.86) in the detection of OSA. These same lipids improved the predictive power of the STOP-Bang questionnaire in terms of the area under the curve (AUC) from 0.61 (0.50-0.74) to 0.80 (0.70-0.90). CONCLUSION: Our results show a plasma lipidomic fingerprint that allows the identification of patients with AD and severe OSA, allowing the personalized management of these individuals. The findings suggest that oxidative stress and inflammation are potential prominent mechanisms underlying the association between OSA and AD.


Asunto(s)
Enfermedad de Alzheimer , Apnea Obstructiva del Sueño , Humanos , Lipidómica , Enfermedad de Alzheimer/complicaciones , Enfermedad de Alzheimer/diagnóstico , Apnea Obstructiva del Sueño/complicaciones , Apnea Obstructiva del Sueño/diagnóstico , Polisomnografía/métodos , Encuestas y Cuestionarios , Lípidos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...