Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Dis Model Mech ; 7(7): 823-35, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24973751

RESUMEN

The unfolded protein response (UPR) is a complex network of sensors and target genes that ensure efficient folding of secretory proteins in the endoplasmic reticulum (ER). UPR activation is mediated by three main sensors, which regulate the expression of hundreds of targets. UPR activation can result in outcomes ranging from enhanced cellular function to cell dysfunction and cell death. How this pathway causes such different outcomes is unknown. Fatty liver disease (steatosis) is associated with markers of UPR activation and robust UPR induction can cause steatosis; however, in other cases, UPR activation can protect against this disease. By assessing the magnitude of activation of UPR sensors and target genes in the liver of zebrafish larvae exposed to three commonly used ER stressors (tunicamycin, thapsigargin and Brefeldin A), we have identified distinct combinations of UPR sensors and targets (i.e. subclasses) activated by each stressor. We found that only the UPR subclass characterized by maximal induction of UPR target genes, which we term a stressed-UPR, induced steatosis. Principal component analysis demonstrated a significant positive association between UPR target gene induction and steatosis. The same principal component analysis showed significant correlation with steatosis in samples from patients with fatty liver disease. We demonstrate that an adaptive UPR induced by a short exposure to thapsigargin prior to challenging with tunicamycin reduced both the induction of a stressed UPR and steatosis incidence. We conclude that a stressed UPR causes steatosis and an adaptive UPR prevents it, demonstrating that this pathway plays dichotomous roles in fatty liver disease.


Asunto(s)
Hígado Graso/genética , Hígado Graso/patología , Respuesta de Proteína Desplegada/genética , Pez Cebra/genética , Animales , Brefeldino A/farmacología , Proteínas de Unión al ADN/metabolismo , Chaperón BiP del Retículo Endoplásmico , Estrés del Retículo Endoplásmico/efectos de los fármacos , Estrés del Retículo Endoplásmico/genética , Hígado Graso/prevención & control , Glicosilación/efectos de los fármacos , Proteínas de Choque Térmico/metabolismo , Hígado/efectos de los fármacos , Hígado/patología , Factores de Transcripción del Factor Regulador X , Tapsigargina/farmacología , Factores de Transcripción/metabolismo , Tunicamicina , Respuesta de Proteína Desplegada/efectos de los fármacos , Regulación hacia Arriba/efectos de los fármacos , Regulación hacia Arriba/genética , Proteínas de Pez Cebra/metabolismo
2.
PLoS Genet ; 10(5): e1004335, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24874946

RESUMEN

Fatty liver disease (FLD) is characterized by lipid accumulation in hepatocytes and is accompanied by secretory pathway dysfunction, resulting in induction of the unfolded protein response (UPR). Activating transcription factor 6 (ATF6), one of three main UPR sensors, functions to both promote FLD during acute stress and reduce FLD during chronic stress. There is little mechanistic understanding of how ATF6, or any other UPR factor, regulates hepatic lipid metabolism to cause disease. We addressed this using zebrafish genetics and biochemical analyses and demonstrate that Atf6 is necessary and sufficient for FLD. atf6 transcription is significantly upregulated in the liver of zebrafish with alcoholic FLD and morpholino-mediated atf6 depletion significantly reduced steatosis incidence caused by alcohol. Moreover, overexpression of active, nuclear Atf6 (nAtf6) in hepatocytes caused FLD in the absence of stress. mRNA-Seq and qPCR analyses of livers from five day old nAtf6 transgenic larvae revealed upregulation of genes promoting glyceroneogenesis and fatty acid elongation, including fatty acid synthase (fasn), and nAtf6 overexpression in both zebrafish larvae and human hepatoma cells increased the incorporation of 14C-acetate into lipids. Srebp transcription factors are key regulators of lipogenic enzymes, but reducing Srebp activation by scap morpholino injection neither prevented FLD in nAtf6 transgenics nor synergized with atf6 knockdown to reduce alcohol-induced FLD. In contrast, fasn morpholino injection reduced FLD in nAtf6 transgenic larvae and synergistically interacted with atf6 to reduce alcoholic FLD. Thus, our data demonstrate that Atf6 is required for alcoholic FLD and epistatically interacts with fasn to cause this disease, suggesting triglyceride biogenesis as the mechanism of UPR induced FLD.


Asunto(s)
Factor de Transcripción Activador 6/genética , Hígado Graso Alcohólico/genética , Hepatocitos/metabolismo , Activación Transcripcional/genética , Factor de Transcripción Activador 6/metabolismo , Factor de Transcripción Activador 6/toxicidad , Animales , Animales Modificados Genéticamente , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patología , Modelos Animales de Enfermedad , Etanol/toxicidad , Hígado Graso Alcohólico/etiología , Hígado Graso Alcohólico/metabolismo , Hepatocitos/patología , Humanos , Metabolismo de los Lípidos/genética , Hígado/metabolismo , Hígado/patología , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patología , Pez Cebra
3.
J Cell Sci ; 127(Pt 3): 485-95, 2014 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-24481493

RESUMEN

Over the past decades, studies using zebrafish have significantly advanced our understanding of the cellular basis for development and human diseases. Zebrafish have rapidly developing transparent embryos that allow comprehensive imaging of embryogenesis combined with powerful genetic approaches. However, forward genetic screens in zebrafish have generated unanticipated findings that are mirrored by human genetic studies: disruption of genes implicated in basic cellular processes, such as protein secretion or cytoskeletal dynamics, causes discrete developmental or disease phenotypes. This is surprising because many processes that were assumed to be fundamental to the function and survival of all cell types appear instead to be regulated by cell-specific mechanisms. Such discoveries are facilitated by experiments in whole animals, where zebrafish provides an ideal model for visualization and manipulation of organelles and cellular processes in a live vertebrate. Here, we review well-characterized mutants and newly developed tools that underscore this notion. We focus on the secretory pathway and microtubule-based trafficking as illustrative examples of how studying cell biology in vivo using zebrafish has broadened our understanding of the role fundamental cellular processes play in embryogenesis and disease.


Asunto(s)
Biología Celular , Desarrollo Embrionario/genética , Proteínas de Transporte Vesicular/genética , Pez Cebra/embriología , Animales , Movimiento Celular/genética , Humanos , Microtúbulos/genética , Microtúbulos/metabolismo , Fenotipo , Vertebrados/genética , Proteínas de Transporte Vesicular/metabolismo , Pez Cebra/genética
4.
J Cell Sci ; 127(Pt 2): 445-54, 2014 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-24259670

RESUMEN

Cells synthesize ceramides in the endoplasmic reticulum (ER) as precursors for sphingolipids to form an impermeable plasma membrane. As ceramides are engaged in apoptotic pathways, cells would need to monitor their levels closely to avoid killing themselves during sphingolipid biosynthesis. How this is accomplished remains to be established. Here we identify SMSr (SAMD8), an ER-resident ceramide phosphoethanolamine (CPE) synthase, as a suppressor of ceramide-mediated cell death. Disruption of SMSr catalytic activity causes a rise in ER ceramides and their mislocalization to mitochondria, triggering a mitochondrial pathway of apoptosis. Blocking de novo ceramide synthesis, stimulating ceramide export from the ER or targeting a bacterial ceramidase to mitochondria rescues SMSr-deficient cells from apoptosis. We also show that SMSr-catalyzed CPE production, although essential, is not sufficient to suppress ceramide-induced cell death and that SMSr-mediated ceramide homeostasis requires the N-terminal sterile α-motif, or SAM domain, of the enzyme. These results define ER ceramides as bona fide transducers of mitochondrial apoptosis and indicate a primary role of SMSr in monitoring ER ceramide levels to prevent inappropriate cell death during sphingolipid biosynthesis.


Asunto(s)
Apoptosis , Ceramidas/metabolismo , Mitocondrias/metabolismo , Transferasas (Grupos de Otros Fosfatos Sustitutos)/metabolismo , Biocatálisis , Ceramidasas/metabolismo , Retículo Endoplásmico/metabolismo , Estrés del Retículo Endoplásmico , Marcación de Gen , Células HeLa , Humanos , Transporte de Proteínas , ARN Interferente Pequeño/metabolismo , Transducción de Señal , Esfingomielinas/metabolismo
5.
Dis Model Mech ; 6(5): 1213-26, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23798569

RESUMEN

Secretory pathway dysfunction and lipid accumulation (steatosis) are the two most common responses of hepatocytes to ethanol exposure and are major factors in the pathophysiology of alcoholic liver disease (ALD). However, the mechanisms by which ethanol elicits these cellular responses are not fully understood. Recent data indicates that activation of the unfolded protein response (UPR) in response to secretory pathway dysfunction can cause steatosis. Here, we examined the relationship between alcohol metabolism, oxidative stress, secretory pathway stress and steatosis using zebrafish larvae. We found that ethanol was immediately internalized and metabolized by larvae, such that the internal ethanol concentration in 4-day-old larvae equilibrated to 160 mM after 1 hour of exposure to 350 mM ethanol, with an average ethanol metabolism rate of 56 µmol/larva/hour over 32 hours. Blocking alcohol dehydrogenase 1 (Adh1) and cytochrome P450 2E1 (Cyp2e1), the major enzymes that metabolize ethanol, prevented alcohol-induced steatosis and reduced induction of the UPR in the liver. Thus, we conclude that ethanol metabolism causes ALD in zebrafish. Oxidative stress generated by Cyp2e1-mediated ethanol metabolism is proposed to be a major culprit in ALD pathology. We found that production of reactive oxygen species (ROS) increased in larvae exposed to ethanol, whereas inhibition of the zebrafish CYP2E1 homolog or administration of antioxidants reduced ROS levels. Importantly, these treatments also blocked ethanol-induced steatosis and reduced UPR activation, whereas hydrogen peroxide (H2O2) acted as a pro-oxidant that synergized with low doses of ethanol to induce the UPR. Collectively, these data demonstrate that ethanol metabolism and oxidative stress are conserved mechanisms required for the development of steatosis and hepatic dysfunction in ALD, and that these processes contribute to ethanol-induced UPR activation and secretory pathway stress in hepatocytes.


Asunto(s)
Etanol/metabolismo , Hígado Graso/complicaciones , Hígado Graso/metabolismo , Hepatopatías Alcohólicas/complicaciones , Estrés Oxidativo , Respuesta de Proteína Desplegada , Pez Cebra/metabolismo , Alcohol Deshidrogenasa/metabolismo , Animales , Antioxidantes/farmacología , Citocromo P-450 CYP2E1/metabolismo , Estrés del Retículo Endoplásmico/efectos de los fármacos , Etanol/toxicidad , Células Estrelladas Hepáticas/efectos de los fármacos , Células Estrelladas Hepáticas/metabolismo , Células Estrelladas Hepáticas/patología , Larva/efectos de los fármacos , Larva/metabolismo , Hígado/efectos de los fármacos , Hígado/metabolismo , Hígado/patología , Hepatopatías Alcohólicas/metabolismo , Estrés Oxidativo/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Vías Secretoras/efectos de los fármacos , Análisis de Supervivencia , Respuesta de Proteína Desplegada/efectos de los fármacos
6.
J Biol Chem ; 288(16): 11520-30, 2013 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-23449981

RESUMEN

Sphingomyelin (SM) is a vital component of mammalian membranes, providing mechanical stability and a structural framework for plasma membrane organization. Its production involves the transfer of phosphocholine from phosphatidylcholine onto ceramide, a reaction catalyzed by SM synthase in the Golgi lumen. Drosophila lacks SM and instead synthesizes the SM analogue ceramide phosphoethanolamine (CPE) as the principal membrane sphingolipid. The corresponding CPE synthase shares mechanistic features with enzymes mediating phospholipid biosynthesis via the Kennedy pathway. Using a functional cloning strategy, we here identified a CDP-ethanolamine:ceramide ethanolamine phosphotransferase as the enzyme responsible for CPE production in Drosophila. CPE synthase constitutes a new branch within the CDP-alcohol phosphotransferase superfamily with homologues in Arthropoda (insects, spiders, mites, scorpions), Cnidaria (Hydra, sea anemones), and Mollusca (oysters) but not in most other animal phyla. The enzyme resides in the Golgi complex with its active site facing the lumen, contrary to the membrane topology of other CDP-alcohol phosphotransferases. Our findings open up an important new avenue to address the biological role of CPE, an enigmatic membrane constituent of a wide variety of invertebrate and marine organisms.


Asunto(s)
Proteínas de Drosophila/metabolismo , Etanolaminofosfotransferasa/metabolismo , Aparato de Golgi/enzimología , Esfingomielinas/biosíntesis , Animales , Proteínas de Drosophila/genética , Drosophila melanogaster , Etanolaminofosfotransferasa/genética , Aparato de Golgi/genética , Hydra/enzimología , Hydra/genética , Anémonas de Mar/enzimología , Anémonas de Mar/genética , Esfingomielinas/genética
7.
Alcohol Clin Exp Res ; 36(1): 14-23, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21790674

RESUMEN

BACKGROUND: Many alcoholic patients have serum protein deficiency that contributes to their systemic problems. The unfolded protein response (UPR) is induced in response to disequilibrium in the protein folding capability of the endoplasmic reticulum (ER) and is implicated in hepatocyte lipid accumulation and apoptosis, which are associated with alcoholic liver disease (ALD). We investigated whether alcohol affects ER structure, function, and UPR activation in hepatocytes in vitro and in vivo. METHODS: HepG2 cells expressing human cytochrome P450 2E1 and mouse alcohol dehydrogenase (VL-17A) were treated for up to 48 hours with 50 and 100 mM ethanol. Zebrafish larvae at 4 days postfertilization were exposed to 350 mM ethanol for 32 hours. ER morphology was visualized by fluorescence in cells and transmission electron microscopy in zebrafish. UPR target gene activation was assessed using quantitative PCR, in situ hybridization, and Western blotting. Mobility of the major ER chaperone, BIP, was monitored in cells by fluorescence recovery after photobleaching (FRAP). RESULTS: VL-17A cells metabolized alcohol yet only had slight activation of some UPR target genes following ethanol treatment. However, ER fragmentation, crowding, and accumulation of unfolded proteins as detected by immunofluorescence and FRAP demonstrate that alcohol induced some ER dysfunction despite the lack of UPR activation. Zebrafish treated with alcohol, however, showed modest ER dilation, and several UPR targets were significantly induced. CONCLUSIONS: Ethanol metabolism directly impairs ER structure and function in hepatocytes. Zebrafish are a novel in vivo system for studying ALD.


Asunto(s)
Retículo Endoplásmico/efectos de los fármacos , Etanol/toxicidad , Hepatocitos/efectos de los fármacos , Hepatocitos/metabolismo , Respuesta de Proteína Desplegada/efectos de los fármacos , Animales , Retículo Endoplásmico/ultraestructura , Células Hep G2 , Humanos , Ratones , Pez Cebra
8.
J Cell Biol ; 185(6): 1013-27, 2009 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-19506037

RESUMEN

Ceramides are central intermediates of sphingolipid metabolism with critical functions in cell organization and survival. They are synthesized on the cytosolic surface of the endoplasmic reticulum (ER) and transported by ceramide transfer protein to the Golgi for conversion to sphingomyelin (SM) by SM synthase SMS1. In this study, we report the identification of an SMS1-related (SMSr) enzyme, which catalyses the synthesis of the SM analogue ceramide phosphoethanolamine (CPE) in the ER lumen. Strikingly, SMSr produces only trace amounts of CPE, i.e., 300-fold less than SMS1-derived SM. Nevertheless, blocking its catalytic activity causes a substantial rise in ER ceramide levels and a structural collapse of the early secretory pathway. We find that the latter phenotype is not caused by depletion of CPE but rather a consequence of ceramide accumulation in the ER. Our results establish SMSr as a key regulator of ceramide homeostasis that seems to operate as a sensor rather than a converter of ceramides in the ER.


Asunto(s)
Ceramidas/metabolismo , Retículo Endoplásmico/metabolismo , Homeostasis , Proteínas de la Membrana/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Transferasas (Grupos de Otros Fosfatos Sustitutos)/metabolismo , Animales , Línea Celular , Drosophila melanogaster/citología , Drosophila melanogaster/metabolismo , Retículo Endoplásmico/ultraestructura , Aparato de Golgi/metabolismo , Humanos , Proteínas de la Membrana/clasificación , Proteínas de la Membrana/genética , Proteínas del Tejido Nervioso/clasificación , Proteínas del Tejido Nervioso/genética , Filogenia , Interferencia de ARN , Vías Secretoras/fisiología , Esfingomielinas/metabolismo , Transferasas (Grupos de Otros Fosfatos Sustitutos)/clasificación , Transferasas (Grupos de Otros Fosfatos Sustitutos)/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...