RESUMEN
The ongoing COVID-19 pandemic has led to the emergence of new SARS-CoV-2 variants as a result of continued host-virus interaction and viral genome mutations. These variants have been associated with varying levels of transmissibility and disease severity. We investigated the phenotypic profiles of six SARS-CoV-2 variants (WT, D614G, Alpha, Beta, Delta, and Omicron) in Calu-3 cells, a human lung epithelial cell line. In our model demonstrated that all variants, except for Omicron, had higher efficiency in virus entry compared to the wild-type. The Delta variant had the greatest phenotypic advantage in terms of early infection kinetics and marked syncytia formation, which could facilitate cell-to-cell spreading, while the Omicron variant displayed slower replication and fewer syncytia formation. We also identified the Delta variant as the strongest inducer of inflammatory biomarkers, including pro-inflammatory cytokines/chemokines (IP-10/CXCL10, TNF-α, and IL-6), anti-inflammatory cytokine (IL-1RA), and growth factors (FGF-2 and VEGF-A), while these inflammatory mediators were not significantly elevated with Omicron infection. These findings are consistent with the observations that there was a generally more pronounced inflammatory response and angiogenesis activity within the lungs of COVID-19 patients as well as more severe symptoms and higher mortality rate during the Delta wave, as compared to less severe symptoms and lower mortality observed during the current Omicron wave in Thailand. Our findings suggest that early infectivity kinetics, enhanced syncytia formation, and specific inflammatory mediator production may serve as predictive indicators for the virulence potential of future SARS-CoV-2 variants.
Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , Virulencia , Pandemias , Citocinas/genética , Biomarcadores , Células GigantesRESUMEN
OBJECTIVES: As coronavirus disease 2019 (COVID-19) rages on worldwide, there is an urgent need to characterize immune correlates of protection from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and to identify immune determinants of COVID-19 severity. METHODS: This study examined the longitudinal profiles of neutralizing antibody (NAb) titers in hospitalized COVID-19 patients clinically diagnosed with mild symptoms, pneumonia, or severe pneumonia, up to 12 months after illness onset, using live-virus neutralization. Multiplex, correlation, and network analyses were used to characterize serum-derived inflammatory cytokine profiles in all severity groups. RESULTS: Peak NAb titers correlated with disease severity, and NAb titers declined over the course of 12 months regardless of severity. Multiplex analyses revealed that IP-10, IL-6, IL-7, and VEGF-α were significantly elevated in severe pneumonia cases compared to those with mild symptoms and pneumonia cases. Correlation and network analyses further suggested that cytokine network formation was distinct in different COVID-19 severity groups. CONCLUSIONS: The study findings inform on the long-term kinetics of naturally acquired serological immunity against SARS-CoV-2 and highlight the importance of identifying key cytokine networks for potential therapeutic immunomodulation.
Asunto(s)
Anticuerpos Neutralizantes/sangre , Anticuerpos Antivirales/sangre , COVID-19 , Citocinas/sangre , COVID-19/inmunología , HumanosAsunto(s)
Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Vacunas contra la COVID-19/administración & dosificación , COVID-19/sangre , SARS-CoV-2/inmunología , Anticuerpos Neutralizantes/sangre , Anticuerpos Antivirales/sangre , COVID-19/virología , China , Ensayos Clínicos Fase I como Asunto , Ensayos Clínicos Fase II como Asunto , Humanos , Inmunoglobulina G/sangre , Inmunoglobulina G/inmunología , SARS-CoV-2/genética , TailandiaRESUMEN
Mice deficient in the IL-10 pathway are the most widely used models of intestinal immunopathology. IL-17A is strongly implicated in gut disease in mice and humans, but conflicting evidence has drawn IL-17's role in the gut into question. IL-22 regulates antimicrobial and repair activities of intestinal epithelial cells (IECs) and is closely associated with IL-17A responses but it's role in chronic disease is uncertain. We report that IL-22, like IL-17A, is aberrantly expressed in colitic Il10-/- mice. While IL-22+ Th17 cells were elevated in the colon, IL-22-producing ILC3s were highly enriched in the small intestines of Il10-/- mice. Remarkably, Il10-/-Il22-/- mice did not develop colitis despite retaining high levels of Th17 cells and remaining colonized with colitogenic Helicobacter spp. Accordant with IL-22-induced IEC proliferation, the epithelia hyperplasia observed in Il10-/- animals was reversed in Il10-/-Il22-/- mice. Also, the high levels of antimicrobial IL-22-target genes, including Reg3g, were normalized in Il10-/-Il22-/- mice. Consistent with a heightened antimicrobial environment, Il10-/- mice had reduced diversity of the fecal microbiome that was reestablished in Il10-/-Il22-/- animals. These data suggest that spontaneous colitis in Il10-/- mice is driven by IL-22 and implicates an underappreciated IL-10/IL-22 axis in regulating intestinal homeostasis.
Asunto(s)
Colitis/etiología , Colitis/metabolismo , Susceptibilidad a Enfermedades , Interleucina-10/deficiencia , Interleucinas/genética , Interleucinas/metabolismo , Animales , Biopsia , Colitis/patología , Modelos Animales de Enfermedad , Expresión Génica , Inmunoglobulina A/inmunología , Inmunoglobulina G/inmunología , Inmunofenotipificación , Leucocitos/inmunología , Leucocitos/metabolismo , Leucocitos/patología , Recuento de Linfocitos , Ratones , Ratones Noqueados , Modelos Biológicos , Subgrupos de Linfocitos T/inmunología , Subgrupos de Linfocitos T/metabolismo , Interleucina-22RESUMEN
Il10 forms a cytokine cluster with Il19, Il20, and Il24 in a conserved region of chromosome 1. The latter genes are in the IL-20 subfamily of IL-10-related cytokines and, although they are not as well studied their biologic actions and expression patterns, seem to have little in common with IL-10. IL-24, like IL-10, however, is uniquely expressed in T cells and is a signature gene of the Th2 lineage, which suggests they could be coregulated in certain cell types. Little is known about other cellular sources of IL-24. We investigated IL-24 and IL-10 expression in murine macrophages and NK cells, and found that although they are coexpressed under most stimulation conditions, IL-24 and IL-10 are controlled by distinct, cell type-specific pathways. In bone marrow-derived macrophages, optimal IL-24 expression required LPS+IL-4 costimulation and STAT6 but was independent of type I IFN receptor signaling and STAT4. Conversely, LPS-induced IL-10 was independent of IL-4/STAT6 and STAT4 but, consistent with other reports, required type I IFN receptor signaling for optimal expression. Remarkably, NK-specific IL-24 (but not IL-10) expression was dependent on both type I IFN receptor signaling and STAT4. Induction of IL-24 expression was accompanied by cell-specific recruitment of STAT6 and STAT4 to multiple sites that we identified within Il24, which mediated STAT-dependent histone modifications across the gene. Collectively, our results indicate that despite being coexpressed, IL-10 and IL-24 are independently regulated by different type I IFN receptor signaling pathways in innate immune cells and provide insight into the mechanisms that fine-tune cell type-specific gene expression within the Il10 cluster.
Asunto(s)
Citocinas/metabolismo , Interleucina-10/metabolismo , Células Asesinas Naturales/metabolismo , Macrófagos/metabolismo , Receptor de Interferón alfa y beta/metabolismo , Factores de Transcripción STAT/metabolismo , Animales , Inmunidad Innata/fisiología , Interleucinas/metabolismo , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Transducción de Señal/fisiologíaRESUMEN
Ly-6A/Stem cell antigen-1 (Ly-6A/Sca-1) is a glycosylphosphatidylinositol-anchored protein expressed on many cell types including hematopoietic stem cells (HSCs) and early lymphoid-specific progenitors. Ly-6A/Sca-1 is expressed on CD4+ T cells and plays a role in regulating cellular responses to foreign antigens. The role of Ly-6A/Sca-1 in primary antibody responses has not been defined. To investigate whether Ly-6A/Sca-1 functions in humoral immunity, we first injected Ly-6A/Sca-1-deficient and wild-type control mice with chicken ovalbumin (c-Ova) protein mixed with an adjuvant. We then assessed the ability of the mice to generate a primary antibody response against cOva. We further examined the development of B cells and circulating antibody isotypes in non-immunized Ly-6A/Sca-1deficient mice to determine if Ly6A/Sca-1 functions in development irrespective of antigen-specific immune activation. Ly-6A/Sca-1/Sca-1-deficient mice did not show any significant changes in the number of B lymphocytes in the bone marrow and peripheral lymphoid tissues. Interestingly, Ly-6A/Sca-1/Sca-1-/- mice have significantly elevated serum levels of IgA with λ light chains compared to wild type controls. B cell clusters with high reactivity to anti-IgA λ monoclonal antibody were detected in the lamina propria of the gut, though this was not observed in the bone marrow and peripheral lymphoid tissues. Despite these differences, the Ly-6A/Sca-1deficient mice generated a similar primary antibody response when compared to the wild-type mice. In summary, we conclude that the primary antibody response to cOva antigen is similar in Ly-6A/Sca-1deficient and sufficient mice. In addition, we report significantly higher expression of the immunoglobulin λ light chain by B cells in lamina propria of Ly-6A/Sca-1deficient mice when compared to the wild-type control.