Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 121(27): e2403777121, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38916998

RESUMEN

Spinal cord dorsal horn inhibition is critical to the processing of sensory inputs, and its impairment leads to mechanical allodynia. How this decreased inhibition occurs and whether its restoration alleviates allodynic pain are poorly understood. Here, we show that a critical step in the loss of inhibitory tone is the change in the firing pattern of inhibitory parvalbumin (PV)-expressing neurons (PVNs). Our results show that PV, a calcium-binding protein, controls the firing activity of PVNs by enabling them to sustain high-frequency tonic firing patterns. Upon nerve injury, PVNs transition to adaptive firing and decrease their PV expression. Interestingly, decreased PV is necessary and sufficient for the development of mechanical allodynia and the transition of PVNs to adaptive firing. This transition of the firing pattern is due to the recruitment of calcium-activated potassium (SK) channels, and blocking them during chronic pain restores normal tonic firing and alleviates chronic pain. Our findings indicate that PV is essential for controlling the firing pattern of PVNs and for preventing allodynia. Developing approaches to manipulate these mechanisms may lead to different strategies for chronic pain relief.


Asunto(s)
Dolor Crónico , Parvalbúminas , Parvalbúminas/metabolismo , Animales , Dolor Crónico/metabolismo , Dolor Crónico/fisiopatología , Ratones , Neuronas/metabolismo , Neuronas/fisiología , Hiperalgesia/metabolismo , Hiperalgesia/fisiopatología , Masculino , Potenciales de Acción/fisiología , Canales de Potasio de Pequeña Conductancia Activados por el Calcio/metabolismo
2.
J Clin Invest ; 134(9)2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38690737

RESUMEN

Inflammation and pain are intertwined responses to injury, infection, or chronic diseases. While acute inflammation is essential in determining pain resolution and opioid analgesia, maladaptive processes occurring during resolution can lead to the transition to chronic pain. Here we found that inflammation activates the cytosolic DNA-sensing protein stimulator of IFN genes (STING) in dorsal root ganglion nociceptors. Neuronal activation of STING promotes signaling through TANK-binding kinase 1 (TBK1) and triggers an IFN-ß response that mediates pain resolution. Notably, we found that mice expressing a nociceptor-specific gain-of-function mutation in STING exhibited an IFN gene signature that reduced nociceptor excitability and inflammatory hyperalgesia through a KChIP1-Kv4.3 regulation. Our findings reveal a role of IFN-regulated genes and KChIP1 downstream of STING in the resolution of inflammatory pain.


Asunto(s)
Proteínas de la Membrana , Nociceptores , Animales , Ratones , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Nociceptores/metabolismo , Ganglios Espinales/metabolismo , Interferón beta/genética , Interferón beta/metabolismo , Inflamación/genética , Inflamación/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Dolor/metabolismo , Dolor/genética , Transducción de Señal , Masculino
3.
Soins ; 68(878): 29-32, 2023 Sep.
Artículo en Francés | MEDLINE | ID: mdl-37657867

RESUMEN

Talking to a deceased patient's next of kin about organ donation is a sensitive, emotionally-charged collective practice. It must be prepared and organized by the coordination and resuscitation team. The quality of the support and follow-up offered to the deceased's family and friends remains essential.


Asunto(s)
Entrevistas como Asunto , Relaciones Profesional-Familia , Obtención de Tejidos y Órganos , Humanos , Cadáver , Obtención de Tejidos y Órganos/organización & administración , Apoyo Social
5.
Cell Mol Life Sci ; 80(7): 181, 2023 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-37329342

RESUMEN

Ependymal cells lining the central canal of the spinal cord play a crucial role in providing a physical barrier and in the circulation of cerebrospinal fluid. These cells express the FOXJ1 and SOX2 transcription factors in mice and are derived from various neural tube populations, including embryonic roof and floor plate cells. They exhibit a dorsal-ventral expression pattern of spinal cord developmental transcription factors (such as MSX1, PAX6, ARX, and FOXA2), resembling an embryonic-like organization. Although this ependymal region is present in young humans, it appears to be lost with age. To re-examine this issue, we collected 17 fresh spinal cords from organ donors aged 37-83 years and performed immunohistochemistry on lightly fixed tissues. We observed cells expressing FOXJ1 in the central region in all cases, which co-expressed SOX2 and PAX6 as well as RFX2 and ARL13B, two proteins involved in ciliogenesis and cilia-mediated sonic hedgehog signaling, respectively. Half of the cases exhibited a lumen and some presented portions of the spinal cord with closed and open central canals. Co-staining of FOXJ1 with other neurodevelopmental transcription factors (ARX, FOXA2, MSX1) and NESTIN revealed heterogeneity of the ependymal cells. Interestingly, three donors aged > 75 years exhibited a fetal-like regionalization of neurodevelopmental transcription factors, with dorsal and ventral ependymal cells expressing MSX1, ARX, and FOXA2. These results provide new evidence for the persistence of ependymal cells expressing neurodevelopmental genes throughout human life and highlight the importance of further investigation of these cells.


Asunto(s)
Proteínas Hedgehog , Médula Espinal , Humanos , Ratones , Animales , Proteínas Hedgehog/genética , Médula Espinal/metabolismo , Neuroglía/metabolismo , Factores de Transcripción/metabolismo , Epéndimo/metabolismo , Factor de Transcripción PAX6/genética , Factor de Transcripción PAX6/metabolismo
6.
Neuron ; 111(3): 328-344.e7, 2023 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-36731429

RESUMEN

The mammalian spinal cord functions as a community of cell types for sensory processing, autonomic control, and movement. While animal models have advanced our understanding of spinal cellular diversity, characterizing human biology directly is important to uncover specialized features of basic function and human pathology. Here, we present a cellular taxonomy of the adult human spinal cord using single-nucleus RNA sequencing with spatial transcriptomics and antibody validation. We identified 29 glial clusters and 35 neuronal clusters, organized principally by anatomical location. To demonstrate the relevance of this resource to human disease, we analyzed spinal motoneurons, which degenerate in amyotrophic lateral sclerosis (ALS) and other diseases. We found that compared with other spinal neurons, human motoneurons are defined by genes related to cell size, cytoskeletal structure, and ALS, suggesting a specialized molecular repertoire underlying their selective vulnerability. We include a web resource to facilitate further investigations into human spinal cord biology.


Asunto(s)
Esclerosis Amiotrófica Lateral , Animales , Humanos , Adulto , Esclerosis Amiotrófica Lateral/metabolismo , Médula Espinal/metabolismo , Neuronas Motoras/metabolismo , Modelos Animales , Neuroglía/metabolismo , Mamíferos
7.
J Clin Invest ; 132(12)2022 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-35608912

RESUMEN

The anaplastic lymphoma kinase (ALK) is a receptor tyrosine kinase known for its oncogenic potential that is involved in the development of the peripheral and central nervous system. ALK receptor ligands ALKAL1 and ALKAL2 were recently found to promote neuronal differentiation and survival. Here, we show that inflammation or injury enhanced ALKAL2 expression in a subset of TRPV1+ sensory neurons. Notably, ALKAL2 was particularly enriched in both mouse and human peptidergic nociceptors, yet weakly expressed in nonpeptidergic, large-diameter myelinated neurons or in the brain. Using a coculture expression system, we found that nociceptors exposed to ALKAL2 exhibited heightened excitability and neurite outgrowth. Intraplantar CFA or intrathecal infusion of recombinant ALKAL2 led to ALK phosphorylation in the lumbar dorsal horn of the spinal cord. Finally, depletion of ALKAL2 in dorsal root ganglia or blocking ALK with clinically available compounds crizotinib or lorlatinib reversed thermal hyperalgesia and mechanical allodynia induced by inflammation or nerve injury, respectively. Overall, our work uncovers the ALKAL2/ALK signaling axis as a central regulator of nociceptor-induced sensitization. We propose that clinically approved ALK inhibitors used for non-small cell lung cancer and neuroblastomas could be repurposed to treat persistent pain conditions.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Citocinas/metabolismo , Neoplasias Pulmonares , Animales , Humanos , Hiperalgesia/metabolismo , Inflamación/patología , Ligandos , Ratones , Dolor/tratamiento farmacológico , Proteínas Tirosina Quinasas Receptoras , Células Receptoras Sensoriales/metabolismo , Asta Dorsal de la Médula Espinal/patología
8.
Methods Mol Biol ; 2389: 103-110, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34558006

RESUMEN

We demonstrated the presence of neural stem cells and/or progenitor cells in the adult human spinal cord. This chapter provides materials and methods to harvest high-quality samples of thoracolumbar, lumbar, and sacral adult human spinal cord and human dorsal root ganglia isolated from brain-dead patients who had agreed before passing to donate their bodies to science for therapeutic and scientific advances. The methods to culture precursor cells from the adult human spinal cord are also described.


Asunto(s)
Células-Madre Neurales , Médula Espinal , Adulto , Técnicas de Cultivo de Célula , Separación Celular , Ganglios Espinales , Humanos
9.
PLoS One ; 14(1): e0210140, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30620747

RESUMEN

BACKGROUND: Standard operating rooms (SOR) are assumed to be the best place to prevent microbial contamination when performing tissue procurement. However, mobilizing an operating room is time and cost consuming if no organ retrieval is performed. In such case, non-operating dedicated rooms (NODR) are usually recommended by European guidelines for tissue harvesting. Performing the tissue retrieval in the Intensive care unit (ICU) when possible might be considered as it allows a faster and simpler procedure. OBJECTIVE: Our primary objective was to study the relationship between the risk of microbial contamination and the location (ICU, SOR or NODR) of the tissue retrieval in heart-beating and non-heart-beating deceased donors. MATERIALS AND METHOD: We retrospectively reviewed all deceased donors' files of the local tissue banks of Montpellier and Marseille from January 2007 to December 2014. The primary endpoint was the microbial contamination of the grafts. We built a multivariate regression model and used a GEE (generalized estimating equations) allowing us to take into account the clustered structure of our data. RESULTS: 2535 cases were analyzed involving 1027 donors. The retrieval took place for 1189 in a SOR, for 996 in a hospital mortuary (NODR) and for 350 in an ICU. 285 (11%) microbial contaminations were revealed. The multivariate analysis found that the location in a hospital mortuary was associated with a lower risk of contamination (OR 0.43, 95% CI [0.2-0.91], p = 0.03). A procurement performed in the ICU was not associated with a significant increased risk (OR 0.62, 95% CI [0.26-1.48], p = 0.4). CONCLUSION: According to our results, performing tissue procurement in dedicated non-sterile rooms could decrease the rate of allograft tissue contamination. This study also suggests that in daily clinical practice, transferring patients from ICU to SOR for tissue procurement could be avoided as it does not lead to less microbial contamination.


Asunto(s)
Microbiología del Aire/normas , Aloinjertos/microbiología , Recolección de Tejidos y Órganos/normas , Obtención de Tejidos y Órganos/normas , Adulto , Anciano , Femenino , Francia , Humanos , Unidades de Cuidados Intensivos/normas , Masculino , Persona de Mediana Edad , Morgue/normas , Quirófanos/normas , Transferencia de Pacientes/normas , Guías de Práctica Clínica como Asunto , Estudios Retrospectivos , Bancos de Tejidos/estadística & datos numéricos , Recolección de Tejidos y Órganos/efectos adversos , Recolección de Tejidos y Órganos/métodos
10.
Soins ; (791): 43-5, 2014 Dec.
Artículo en Francés | MEDLINE | ID: mdl-25630090

RESUMEN

Medical advances have changed how death is diagnosed and defined. Total and irreversible brain damage can now be identified on the basis of sophisticated clinical and technical criteria. It allows doctors to certify the death and opens the possibility of organ donation. Brain death however upsets the normal representations and acceptance of death which complicates the issue of organ donation.


Asunto(s)
Muerte Encefálica , Relaciones Profesional-Familia , Consentimiento por Terceros , Obtención de Tejidos y Órganos , Humanos
11.
Methods Mol Biol ; 1059: 87-93, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23934836

RESUMEN

Our group recently provided evidence for the presence of neural stem cells and/or progenitor cells in the adult human spinal cord. In this chapter, we review materials and methods to harvest high-quality samples of thoracolumbar, lumbar, and sacral adult human spinal cord from brain-dead patients who had agreed to donate their bodies to science for therapeutic and scientific advances. The methods to culture precursor cells from the adult human spinal cord are also described.


Asunto(s)
Separación Celular , Células-Madre Neurales/citología , Médula Espinal/citología , Adulto , Disección , Humanos , Cultivo Primario de Células , Esferoides Celulares/citología , Obtención de Tejidos y Órganos
12.
BMC Neurosci ; 12: 99, 2011 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-21985235

RESUMEN

BACKGROUND: The adult central nervous system (CNS) contains different populations of immature cells that could possibly be used to repair brain and spinal cord lesions. The diversity and the properties of these cells in the human adult CNS remain to be fully explored. We previously isolated Nestin+ Sox2+ neural multipotential cells from the adult human spinal cord using the neurosphere method (i.e. non adherent conditions and defined medium). RESULTS: Here we report the isolation and long term propagation of another population of Nestin+ cells from this tissue using adherent culture conditions and serum. QPCR and immunofluorescence indicated that these cells had mesenchymal features as evidenced by the expression of Snai2 and Twist1 and lack of expression of neural markers such as Sox2, Olig2 or GFAP. Indeed, these cells expressed markers typical of smooth muscle vascular cells such as Calponin, Caldesmone and Acta2 (Smooth muscle actin). These cells could not differentiate into chondrocytes, adipocytes, neuronal and glial cells, however they readily mineralized when placed in osteogenic conditions. Further characterization allowed us to identify the Nkx6.1 transcription factor as a marker for these cells. Nkx6.1 was expressed in vivo by CNS vascular muscular cells located in the parenchyma and the meninges. CONCLUSION: Smooth muscle cells expressing Nestin and Nkx6.1 is the main cell population derived from culturing human spinal cord cells in adherent conditions with serum. Mineralization of these cells in vitro could represent a valuable model for studying calcifications of CNS vessels which are observed in pathological situations or as part of the normal aging. In addition, long term propagation of these cells will allow the study of their interaction with other CNS cells and their implication in scar formation during spinal cord injury.


Asunto(s)
Calcificación Fisiológica/fisiología , Proteínas de Homeodominio/metabolismo , Proteínas de Filamentos Intermediarios/metabolismo , Miocitos del Músculo Liso/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Cultivo Primario de Células/métodos , Médula Espinal/irrigación sanguínea , Médula Espinal/metabolismo , Adulto , Adhesión Celular/fisiología , Separación Celular/métodos , Proteínas de Homeodominio/sangre , Humanos , Proteínas de Filamentos Intermediarios/sangre , Miocitos del Músculo Liso/citología , Proteínas del Tejido Nervioso/sangre , Nestina , Médula Espinal/citología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...