Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Mol Ecol ; 32(16): 4584-4598, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37332135

RESUMEN

A fundamental question in holobiont biology is the extent to which microbiomes are determined by host characteristics regulated by their genotype. Studies on the interactions of host genotype and microbiomes are emerging but disentangling the role that host genotype has in shaping microbiomes remains challenging in natural settings. Host genotypes tend to be segregated in space and affected by different environments. Here we overcome this challenge by studying an unusual situation where host asexual (5 clonal lineages) and sexual genotypes (15 non-clonal lineages) of the same species co-occur under the same environment. This allowed us to partition the influence of morphological traits and genotype in shaping host-associated bacterial communities. Lamina-associated bacteria of co-occurring kelp sexual non-clonal (Ecklonia radiata) and asexual clonal (E. brevipes) morphs were compared to test whether host genotype influences microbiomes beyond morphology. Similarity of bacterial composition and predicted functions were evaluated among individuals within a single clonal genotype or among non-clonal genotypes of each morph. Higher similarity in bacterial composition and inferred functions were found among identical clones of E. brevipes compared to other clonal genotypes or unique non-clonal E. radiata genotypes. Additionally, bacterial diversity and composition differed significantly between the two morphs and were related with one morphological trait in E. brevipes (haptera). Thus, factors regulated by the host genotype (e.g. secondary metabolite production) likely drive differences in microbial communities between morphs. The strong association of genotype and microbiome found here highlights the importance of genetic relatedness of hosts in determining variability in their bacterial symbionts.


Asunto(s)
Kelp , Microbiota , Humanos , Kelp/genética , Microbiota/genética , Genotipo
2.
Microbiology (Reading) ; 168(4)2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35416764

RESUMEN

Antarctic sea-ice forms a complex and dynamic system that drives many ecological processes in the Southern Ocean. Sea-ice microalgae and their associated microbial communities are understood to influence nutrient flow and allocation in marine polar environments. Sea-ice microalgae and their microbiota can have high seasonal and regional (>1000 km2) compositional and abundance variation, driven by factors modulating their growth, symbiotic interactions and function. In contrast, our knowledge of small-scale variation in these communities is limited. Understanding variation across multiple scales and its potential drivers is critical for informing on how multiple stressors impact sea-ice communities and the functions they provide. Here, we characterized bacterial communities associated with sea-ice microalgae and the potential drivers that influence their variation across a range of spatial scales (metres to >10 kms) in a previously understudied area in Commonwealth Bay, East Antarctica where anomalous events have substantially and rapidly expanded local sea-ice coverage. We found a higher abundance and different composition of bacterial communities living in sea-ice microalgae closer to the shore compared to those further from the coast. Variation in community structure increased linearly with distance between samples. Ice thickness and depth to the seabed were found to be poor predictors of these communities. Further research on the small-scale environmental drivers influencing these communities is needed to fully understand how large-scale regional events can affect local function and ecosystem processes.


Asunto(s)
Microalgas , Microbiota , Regiones Antárticas , Bahías , Ecosistema , Cubierta de Hielo
3.
Mar Environ Res ; 169: 105391, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34217096

RESUMEN

Eutrophication is an increasing problem worldwide and can disrupt ecosystem processes in which macrobenthic bioturbators play an essential role. This study explores how intraspecific variation in body size affects the survival, mobility and impact on sediment organic matter breakdown in enriched sediments of an infaunal bivalve. A mesocosm experiment was conducted in which monocultures and all size combinations of three body sizes (small, medium and large) of the Sydney cockle, Anadara trapezia, were exposed to natural or organically enriched sediments. Results demonstrate that larger body sizes have higher tolerance to enriched conditions and can reduce survival of smaller cockles when grown together. Also, large A. trapezia influenced sediment organic matter breakdown although a direct link to bioturbation activity was not clear. Overall, this study found that intraspecific variation in body size influences survival and performance of bioturbators in eutrophic scenarios.


Asunto(s)
Bivalvos , Cardiidae , Animales , Tamaño Corporal , Ecosistema , Sedimentos Geológicos
4.
Environ Pollut ; 250: 426-436, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31026689

RESUMEN

Human activities introduce significant contamination into aquatic systems that impact biodiversity and ecosystem function. Many contaminants accumulate, and remediation options are now required worldwide. One method for bioremediation involves the application of macrofauna to stimulate microbial ecosystem processes including contaminant removal. However, if we are to confidently apply such a technique, we need clarity on the effect of bioturbators on different contaminants and how these vary under different environmental scenarios. Here we used a systematic review and meta-analysis to analyse current knowledge on the activities of bioturbating macrofauna in contaminated sediments and quantify how bioturbation-bioremediation changes depend on the taxonomic group, the aquatic ecosystem and important environmental variables. Three common contaminant classes were reviewed and analysed: metals, nutrients (i.e. ammonia and phosphorous) and polycyclic aromatic hydrocarbons (PAH). In addition, meta-regressions were calculated to estimate the effect of environmental and experimental design variables on effect sizes. Meta-analytic results revealed that deeper burrowing and more active sediment surface animals (e.g. polychaetes) increased metal release from sediments, nutrients and oxygen uptake by microbial fractions in comparison to bioturbators that inhabit shallower depths in sediments. In addition, there was a different effect of bioturbators on response variables in different aquatic systems. Finally, bioturbator effects on nutrient and metal release appeared modulated by context-specific variables such as temperature, pH, sediment grain size, animal density and experimental duration. Our findings highlight critical knowledge gaps such as field applications, less studied macrobenthic fauna and the incorporation of molecular approaches. Our results provide the first quantitative synthesis of the effects of bioturbators on contaminant fate and the variables that need to be considered for the optimization of this method as a viable approach for sediment remediation and contaminant management in aquatic systems.


Asunto(s)
Biodegradación Ambiental , Conducta Alimentaria , Invertebrados/fisiología , Animales , Organismos Acuáticos/fisiología , Ecosistema , Sedimentos Geológicos/química , Humanos , Metales , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/metabolismo
5.
Exp Ther Med ; 12(3): 1419-1427, 2016 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-27602069

RESUMEN

Asthma airway remodeling is characterized by the thickening of the basement membrane (BM) due to an increase in extracellular matrix (ECM) deposition, which contributes to the irreversibility of airflow obstruction. Interstitial collagens are the primary ECM components to be increased during the fibrotic process. The aim of the present study was to examine the interstitial collagen turnover during the course of acute and chronic asthma, and 1 month after the last exposure to the allergen. Guinea pigs sensitized to ovalbumin (OVA) and exposed to 3 further OVA challenges (acute model) or 12 OVA challenges (chronic model) were used as asthma experimental models. A group of animals from either model was sacrificed 1 h or 1 month after the last OVA challenge. Collagen distribution, collagen content, interstitial collagenase activity and matrix metalloproteinase (MMP)-1, MMP-13 and tissue inhibitor of metalloproteinase (TIMP)-1 protein expression levels were measured in the lung tissue samples from both experimental models. The results revealed that collagen deposit in bronchiole BM, adventitial and airway smooth muscle layers was increased in both experimental models as well as lung tissue collagen concentration. These structural changes persisted 1 month after the last OVA challenge. In the acute model, a decrease in collagenase activity and in MMP-1 concentration was observed. Collagenase activity returned to basal levels, and an increase in MMP-1 and MMP-13 expression levels along with a decrease in TIMP-1 expression levels were observed in animals sacrificed 1 month after the last OVA challenge. In the chronic model, there were no changes in collagenase activity or in MMP-13 concentration, although MMP-1 expression levels increased. One month later, an increase in collagenase activity was observed, although MMP-1 and TIMP-1 levels were not altered. The results of the present study suggest that even when the allergen challenges were discontinued, and collagenase activity and MMP-1 expression increased, fibrosis remained, contributing to the irreversibility of bronchoconstriction.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...