RESUMEN
Successfully managing and utilizing feedback is a critical skill for self-improvement. Properly identifying feedback literacy level is crucial to facilitate teachers and learners especially in clinical learning to plan for better learning experience. The present review aimed to gather and examine the existing definitions and metrics used to assess feedback literacy (or parts of its concepts) for health professions education. A systematic search was conducted on six databases, together with a manual search in January 2023. Quality of the included studies were appraised using the COSMIN Checklist. Information on the psychometric properties and clinical utility of the accepted instruments were extracted. A total 2226 records of studies were identified, and 11 articles included in the final analysis extracting 13 instruments. These instruments can be administered easily, and most are readily accessible. However, 'appreciating feedback' was overrepresented compared to the other three features of feedback literacy and none of the instruments had sufficient quality across all COSMIN validity rating sections. Further research studies should focus on developing and refining feedback literacy instruments that can be adapted to many contexts within health professions education. Future research should apply a rigorous methodology to produce a valid and reliable student feedback literacy instrument.
RESUMEN
In H. pylori infection, antibiotic-resistance is one of the most common causes of treatment failure. Bacterial metabolic activities, such as energy production, bacterial growth, cell wall construction, and cell-cell communication, all play important roles in antimicrobial resistance mechanisms. Identification of microbial metabolites may result in the discovery of novel antimicrobial therapeutic targets and treatments. The purpose of this work is to assess H. pylori metabolomic reprogramming in order to reveal the underlying mechanisms associated with the development of clarithromycin resistance. Previously, four H. pylori isolates were induced to become resistant to clarithromycin in vitro by incrementally increasing the concentrations of clarithromycin. Bacterial metabolites were extracted using the Bligh and Dyer technique and analyzed using metabolomic fingerprinting based on Liquid Chromatography Quadrupole Time-of-Flight Mass Spectrometry (LC-Q-ToF-MS). The data was processed and analyzed using the MassHunter Qualitative Analysis and Mass Profiler Professional software. In parental sensitivity (S), breakpoint isolates (B), and induced resistance isolates (R) H. pylori isolates, 982 metabolites were found. Furthermore, based on accurate mass, isotope ratios, abundances, and spacing, 292 metabolites matched the metabolites in the Agilent METLIN precise Mass-Personal Metabolite Database and Library (AM-PCDL). Several metabolites associated with bacterial virulence, pathogenicity, survival, and proliferation (L-leucine, Pyridoxone [Vitamine B6], D-Mannitol, Sphingolipids, Indoleacrylic acid, Dulcitol, and D-Proline) were found to be elevated in generated resistant H. pylori isolates when compared to parental sensitive isolates. The elevated metabolites could be part of antibiotics resistance mechanisms. Understanding the fundamental metabolome changes in the course of progressing from clarithromycin-sensitive to breakpoint to resistant in H. pylori clinical isolates may be a promising strategy for discovering novel alternatives therapeutic targets.
Asunto(s)
Antiinfecciosos , Helicobacter pylori , Claritromicina/farmacología , Virulencia , Reprogramación MetabólicaRESUMEN
Current treatments for stomach cancer are often effective in curing cancer. However, these treatments can also have significant side effects, and they may not be effective in all cases. Hence synthetic compounds exhibit promise as potential agents for cancer treatment. In a previous study, we identified (E)-N'- (2,3,4-trihydroxybenzylidene) isonicotinohydrazide (ITHB4) as a novel antimycobacterial derivative of isoniazid with cytotoxic effects on the MCF-7 breast cancer cell line. This led us to investigate the potential anti-cancer properties of ITHB4 against adenocarcinoma gastric (AGS) cell line. The cytotoxic effect of ITHB4 has been determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay and further confirmed for anticancer properties by means of apoptosis, reactive oxygen species (ROS), nuclear fragmentation, lactate dehydrogenase (LDH), caspases, cytokines and morphological including phenotypic changes of cells assay. The ITHB4 demonstrated a lower IC50 in inhibiting growth of AGS cells at 24 h compared to 48 and 72 h. ITHB4 has also shown no toxicity human immune cells. Treatment of ITHB4 against AGS for 24 h eventually lead to formation of early apoptotic AGS cells, reduced mitochondrial membrane potential, nuclear condensation, and nuclear fragmentation lastly increased in ROS levels together with the release of LDH, and secretion of caspases. The altered cytokine profile in ITHB4 treated AGS hints at the possibility that ITHB4 may possess anti-tumor and anti-inflammatory properties. Our results in this study demonstrate that ITHB4 has almost similar chemotherapeutic properties against gastric adenocarcinoma cells compared to breast cancer cell. This is suggesting that the anticancer capabilities of this compound should be in vivo and clinically assessed.
Asunto(s)
Adenocarcinoma , Antineoplásicos , Neoplasias de la Mama , Neoplasias Gástricas , Humanos , Femenino , Neoplasias Gástricas/metabolismo , Isoniazida/farmacología , Especies Reactivas de Oxígeno/metabolismo , Línea Celular Tumoral , Apoptosis , Caspasas , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Adenocarcinoma/metabolismo , Neoplasias de la Mama/tratamiento farmacológico , Proliferación CelularRESUMEN
BACKGROUND: Clarithromycin-containing triple therapy is commonly used to treat Helicobacter pylori infections. Clarithromycin resistance is the leading cause of H. pylori treatment failure. Understanding the specific mutations that occur in H. pylori strains that have evolved antibiotic resistance can help create a more effective and individualised antibiotic treatment plan. However, little is understood about the genetic reprogramming linked to clarithromycin exposure and the emergence of antibiotic resistance in H. pylori. Therefore, this study aims to identify compensatory mutations and biofilm formation associated with the development of clarithromycin resistance in H. pylori. Clarithromycin-sensitive H. pylori clinical isolates were induced to develop clarithromycin resistance through in vitro exposure to incrementally increasing concentration of the antibiotic. The genomes of the origin sensitive isolates (S), isogenic breakpoint (B), and resistant isolates (R) were sequenced. Single nucleotide variations (SNVs), and insertions or deletions (InDels) associated with the development of clarithromycin resistance were identified. Growth and biofilm production were also assessed. RESULTS: The S isolates with A2143G mutation in the 23S rRNA gene were successfully induced to be resistant. According to the data, antibiotic exposure may alter the expression of certain genes, including those that code for the Cag4/Cag protein, the vacuolating cytotoxin domain-containing protein, the sel1 repeat family protein, and the rsmh gene, which may increase the risk of developing and enhances virulence in H. pylori. Enhanced biofilm formation was detected among R isolates compared to B and S isolates. Furthermore, high polymorphism was also detected among the genes associated with biofilm production. CONCLUSIONS: Therefore, this study suggests that H. pylori may acquire virulence factors while also developing antibiotic resistance due to clarithromycin exposure.
RESUMEN
Almost 70% of clinically used antineoplastic drugs are originated from natural products such as plants, marine organism, and microorganisms and some of them are also structurally modified natural products. The naturally occurring drugs may specifically act as inducers of selective cytotoxicity, anti-metastatic, anti-mutagenic, anti-angiogenesis, antioxidant accelerators, apoptosis inducers, autophagy inducers, and cell cycle inhibitors in cancer therapy. Precisely, several reports have demonstrated the involvement of naturally occurring anti-breast cancer drugs in regulating the expression of oncogenic and tumor suppressors associated with carcinogen metabolism and signaling pathways. Anticancer therapies based on nanotechnology have the potential to improve patient outcomes through targeted therapy, improved drug delivery, and combination therapies. This paper has reviewed the current treatment for breast cancer and the potential disadvantages of those therapies, besides the various mechanism used by naturally occurring phytochemicals to induce apoptosis in different types of breast cancer. Along with this, the contribution of nanotechnology in improving the effectiveness of anticancer drugs was also reviewed. With the development of sciences and technologies, phytochemicals derived from natural products are continuously discovered; however, the search for novel natural products as chemoprevention drugs is still ongoing, especially for the advanced stage of breast cancer. Continued research and development in this field hold great promise for advancing cancer care and improving patient outcomes.
RESUMEN
Background: Uropathogenic Escherichia coli (UPEC) is the predominant agent causing various categories of complicated urinary tract infections (cUTI). Although existing data reveals that UPEC harboured numerous virulence determinants to aid its survival in the urinary tract, the reason behind the occurrence of differences in the clinical severity of uninary tract infections (UTI) demonstrated by the UPEC infection is poorly understood. Therefore, the present study aims to determine the distribution of virulence determinants and antimicrobial resistance among different phylogroups of UPEC isolated from various clinical categories of cUTI and asymptomatic bacteriuria (ASB) E. coli isolates. The study will also attempt a relational analysis of the genotypic characteristics of cUTI UPEC and ASB E. coli isolates. Methods: A total of 141 UPEC isolates from cUTI and 160 ASB E. coli isolates were obtained from Universiti Malaya Medical Centre (UMMC). Phylogrouping and the occurrence of virulence genes were investigated using polymerase chain reaction (PCR). Antimicrobial susceptibility of the isolates to different classes of antibiotics was determined using the Kirby Bauer Disc Diffusion method. Results: The cUTI isolates were distributed differentially among both Extraintestinal Pathogenic E. coli (ExPEC) and non-ExPEC phylogroups. Phylogroup B2 isolates were observed to possess the highest average aggregative virulence score (7.17), a probable representation of the capability to cause severe disease. Approximately 50% of the cUTI isolates tested in this study were multidrug resistant against common antibiotics used to treat UTI. Analysis of the occurrence of virulence genes among different cUTI categories demonstrated that UPEC isolates of pyelonephritis and urosepsis were highly virulent and had the highest average aggregative virulence scores of 7.80 and 6.89 respectively, compared to other clinical categories. Relational analysis of the occurrence of phylogroups and virulence determinants of UPEC and ASB E. coli isolates showed that 46.1% of UPEC and 34.3% of ASB E. coli from both categories were distributed in phylogroup B2 and had the highest average aggregative virulence score of 7.17 and 5.37, respectively. The data suggest that UPEC isolates which carry virulence genes from all four virulence genes groups studied (adhesions, iron uptake systems, toxins and capsule synthesis) and isolates from phylogroup B2 specifically could predispose to severe UTI involving the upper urinary tract. Therefore, specific analysis of the genotypic characteristics of UPEC could be further explored by incorporating the combination of virulence genes as a prognostic marker for predicting disease severity, in an attempt to propose a more evidence driven treatment decision-making for all UTI patients. This will go a long way in enhancing favourable therapeutic outcomes and reducing the antimicrobial resistance burden among UTI patients.
Asunto(s)
Bacteriuria , Infecciones Urinarias , Escherichia coli Uropatógena , Humanos , Bacteriuria/tratamiento farmacológico , Escherichia coli Uropatógena/genética , Infecciones Urinarias/tratamiento farmacológico , Factores de Virulencia/genética , Antibacterianos/farmacologíaRESUMEN
BACKGROUND: Academic failure is common among medical schools worldwide. However, the process behind this failure itself is underexplored. A deeper understanding of this phenomenon may avert the vicious cycle of academic failure. Hence, this study investigated the process of academic failure among medical students in Year 1. METHODS: This study employed a document phenomenological approach, which is a systematic process to examine documents, interpret them to attain understanding, and develop empirical knowledge of the phenomenon studied. Using document analysis, interview transcripts and reflective essays of 16 Year 1 medical students who experienced academic failure were analysed. Based on this analysis, codes were developed and further reduced into categories and themes. Thirty categories in eight themes were linked to make sense of the series of events leading to academic failure. RESULTS: One or more critical incidents commenced during the academic year, which led to possible resulting events. The students had poor attitudes, ineffective learning methods, health problems or stress. Students progressed to mid-year assessments and reacted differently to their results in the assessments. Afterwards, the students tried different types of attempts, and they still failed the end-of-year assessments. The general process of academic failure is illustrated in a diagram describing chronological events. CONCLUSION: Academic failure may be explained by a series of events (and consequences) of what students experience and do and how they respond to their experiences. Preventing a preceding event may prevent students from suffering these consequences.
Asunto(s)
Estudiantes de Medicina , Humanos , Fracaso Escolar , Ansiedad , Actitud , Análisis de DocumentosRESUMEN
The effectiveness of current antifungal therapies is hampered by the emergence of drug resistance strains, highlighting an urgent need for new alternatives such as adjuvant antifungal treatments. This study aims to examine the synergism between propranolol and antifungal drugs, based on the premise that propranolol is known to inhibit fungal hyphae. In vitro studies demonstrate that propranolol potentiates the antifungal activity of azoles and that the effect is more pronounced for propranolol-itraconazole combination. Using an in vivo murine systemic candidemia model, we show that propranolol-itraconazole combination treatment resulted in a lower rate of body weight loss, decreased kidney fungal bioburden and renal inflammation when compared to propranolol and azole treatment alone or untreated control. Altogether, our findings suggest that propranolol increases the efficacy of azoles against C. albicans, offering a new therapeutic strategy against invasive fungal infections.
RESUMEN
Klebsiella pneumoniae (K. pneumoniae) colonizes the human gut and is a causative factor of pyogenic liver abscess (PLA). Retrospective studies conducted on K. pneumoniae PLA patients revealed subsequent CRC development in later years of their life with increasing prevalence of these strains harbouring polyketide synthase (PKS) genes. To our knowledge there are no known studies directly implicating K. pneumoniae with CRC to date. Our aims are to characterize K. pneumoniae isolates from CRC patients and investigate its effects on cell proliferation in vitro. K. pneumoniae isolates were characterized by screening virulence genes including polyketide synthase (PKS), biofilm assay, antibiotic susceptibility, and string test to determine hypervirulent (hvKp) strains. Solubilised antigens of selected K. pneumoniae isolates were co-cultured with primary colon cell lines and CRC cell lines (Stage I-IV) for 48 h. The enhancement of proliferation was measured through MTT and ECIS assay. Twenty-five percent of K. pneumoniae isolates were PKS-positive out of which 50% were hvKp strains. The majority of the isolates were from the more virulent serotype of K1 (30%) and K2 (50%). PKS-positive K. pneumoniae isolates did not possess genes to confer carbapenem resistance but instead were more highly associated with siderophore genes (aerobactin, enterobactin, and yersiniabactin) and allantoin metabolism genes (allS, allS2). Cell proliferation in primary colon, SW1116 (Stage I), and SW480 (Stage II) CRC cell lines were enhanced when co-cultured with PKS-positive K. pneumoniae antigens. ECIS revealed enhanced cell proliferation upon recurrent antigen exposure. This demonstrates the possible role that PKS-positive K. pneumoniae has in exacerbating CRC progression.
RESUMEN
Helicobacter pylori colonization and persistence could precede gastric adenocarcinoma. Elucidating immune recognition strategies of H. pylori is therefore imperative to curb chronic persistence in the human host. Toll-like receptor 7 (TLR7) and TLR8 are widely known as viral single-stranded RNA (ssRNA) sensors yet less studied in the bacteria context. Here, we investigated the involvement of these receptors in the immunity to H. pylori. Human THP-1 monocytic cells were infected with H. pylori, and the expression levels of human Toll-like receptors (TLRs) were examined. The roles of TLR7 and TLR8 in response to H. pylori infection were further investigated using receptor antagonists. Among all TLR transcripts examined, TLR8 exhibited the most prominent upregulation, followed by TLR7 in the THP-1 cells infected with H. pylori J99 or SS1 strains. H. pylori infection-mediated IFN-α and IFN-ß transactivation was significantly abrogated by the TLR7/8 (but not TLR7) antagonist. Additionally, TLR7/8 antagonist treatment reduced H. pylori infection-mediated phosphorylation of interferon regulatory factor 7 (IRF7). Our study suggests a novel role of TLR8 signaling in host immunity against H. pylori through sensing live bacteria to elicit the production of type I interferon.
Asunto(s)
Infecciones por Helicobacter , Interferón Tipo I , Monocitos , Receptor Toll-Like 8 , Humanos , Infecciones por Helicobacter/inmunología , Helicobacter pylori/metabolismo , Interferón Tipo I/metabolismo , Monocitos/inmunología , Receptor Toll-Like 8/metabolismoRESUMEN
Biofilm-producing Staphylococcus aureus (S. aureus) is less sensitive to conventional antibiotics than free-living planktonic cells. Here, we evaluated the antibiofilm activity of Illicium verum (I. verum) and one of its constituent compounds 3-hydroxybenzoic acid (3-HBA) against multi-drug-resistant S. aureus. We performed gas chromatography-mass spectroscopy (GC-MS) to identify the major constituents in the methanolic extract of I. verum. Ligand-receptor interactions were studied by molecular docking, and in vitro investigations were performed using crystal violet assay, spreading assay, hemolysis, proteolytic activity, and growth curve analysis. The methanolic extract of I. verum inhibited S. aureus at 4.8 mg/mL, and GC-MS analysis revealed anethole, m-methoxybenzaldehyde, and 3-HBA as the major constituents. Molecular docking attributed the antibiofilm activity to an active ligand present in 3-HBA, which strongly interacted with the active site residues of AgrA and SarA of S. aureus. At a subinhibitory concentration of 2.4 mg/mL, the extract showed biofilm inhibition. Similarly, 3-HBA inhibited biofilm activity at 25 µg/mL (90.34%), 12.5 µg/mL (77.21%), and 6.25 µg/mL (62.69%) concentrations. Marked attrition in bacterial spreading was observed at 2.4 mg/mL (crude extract) and 25 µg/mL (3-HBA) concentrations. The methanol extract of I. verum and 3-HBA markedly inhibited ß-hemolytic and proteolytic activities of S. aureus. At the lowest concentration, the I. verum extract (2.4 mg/mL) and 3-HBA (25 µg/mL) did not inhibit bacterial growth. Optical microscopy and SEM analysis confirmed that I. verum and 3-HBA significantly reduced biofilm dispersion without disturbing bacterial growth. Together, we found that the antibiofilm activity of I. verum and 3-HBA strongly targeted the Agr and Sar systems of S. aureus.
RESUMEN
Asymptomatic bacteriuria (ASB) caused by Escherichia coli (E. coli) is a significant condition associated with pregnancy and is considered as prognostic for the development of symptomatic urinary tract infection (UTI). However, treating all ASB increases the use of antibiotics and leads to the development of multidrug resistance (MDR). Therefore, this study aimed to identify the distribution of UPEC associated virulence genes and antibiotic susceptibility among phylogroups of E. coli isolated from ASB in pregnancy. Moreover, the gene expression of selected virulence genes was also compared among two E. coli isolates (with different pathogenic potential) to determine its pathogenicity. One hundred and sixty E. coli isolates from midstream urine samples of pregnant women with ASB were subjected to PCR-based detection for its phylogroups and virulence genes. The antibiotic susceptibility of isolated strains was determined by the disc diffusion method. Expression of the virulence genes were determined through microarray analysis and quantitative Real-Time PCR. The prevalence of ASB in this study was 16.1%. Within ASB isolates, the occurrence of phylogroup B2 was the highest, and isolates from this group harboured most of the virulence genes studied. Overall, the most identified virulence genes among all phylogroups in descending order were fimH, chuA, kpsMTII, usp, fyuA, hlyA, iroN, cnf, papC, sfa, ompT, and sat. In this study, higher resistance to antibiotics was observed for ampicillin (77.5%), amoxicillin-clavulanate (54.4%), trimethoprim-sulfamethoxazole (46.9%) and amikacin (43.8%) compared to the other tested antibiotics and 51.9% of the tested isolates were MDR. Furthermore, hierarchical clustering and gene expression analysis demonstrated extreme polarization of pathogenic potential of E. coli causing ASB in pregnancy necessitating the need for bacterial isolate focused approach towards treatment of ASB.
Asunto(s)
Bacteriuria , Infecciones por Escherichia coli , Infecciones Urinarias , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Bacteriuria/diagnóstico , Bacteriuria/tratamiento farmacológico , Bacteriuria/microbiología , Escherichia coli , Infecciones por Escherichia coli/diagnóstico , Infecciones por Escherichia coli/tratamiento farmacológico , Infecciones por Escherichia coli/epidemiología , Femenino , Humanos , Masculino , Embarazo , Infecciones Urinarias/diagnóstico , Infecciones Urinarias/tratamiento farmacológico , Infecciones Urinarias/microbiología , Virulencia/genética , Factores de Virulencia/genéticaRESUMEN
OBJECTIVE: This study investigated the subgingival microbial profile of rheumatoid arthritis (RA) patients and its associations with disease parameters and the inflammation-related antimicrobial peptide, LL-37. METHODS: RA and non-RA (NRA) patients were assessed for periodontal status and divided into periodontitis (CP), gingivitis (G), and healthy (H) groups. Subgingival plaque 16s rRNA gene sequencing data was processed and analyzed using the CLC Genomic Workbench (Qiagen). Bacterial diversity and co-occurrence patterns were examined. Differential abundance between groups was also investigated. Associations between bacterial genera with disease parameters and LL-37 levels were explored qualitatively using canonical correlation analysis. RESULTS: Subgingival microbial community clustered in CP status. Co-occurrence network in NRA-H was dominated by health-associated genera, while the rest of the networks' key genera were both health- and disease-associated. RA-CP displayed highly inter-generic networks with a statistically significant increase in periodontal disease-associated genera (p<0.05). In NRA-H, disease parameters and LL-37 were correlated positively with disease-associated genera while negatively with health-associated genera. However, in the remaining groups, mixed positive and negative correlations were noted with genera. CONCLUSION: RA patients demonstrated subgingival microbial dysbiosis where the bacteria networks were dominated by health- and disease-associated genera. Mixed correlations with disease parameters and LL-37 levels were noted. CLINICAL RELEVANCE: The subgingival microbial dysbiosis in RA may predispose these patients to developing periodontal inflammation with an associated detrimental effect on host immune responses. Routine periodontal assessment may allow initiation of treatment strategies to minimize the effects of gingival inflammation on the existing heightened immune response present in RA patients.
Asunto(s)
Artritis Reumatoide , Gingivitis , Periodontitis , Artritis Reumatoide/complicaciones , Bacterias , Disbiosis/complicaciones , Disbiosis/microbiología , Gingivitis/complicaciones , Humanos , Inflamación , Periodontitis/microbiología , ARN Ribosómico 16S/genéticaRESUMEN
[This corrects the article DOI: 10.3389/fimmu.2021.702156.].
RESUMEN
BACKGROUND: Poor academic performance and failure can cause undesired effects for students, schools, and society. Understanding why some students fail while their peers succeed is important to enhance student performance. Therefore, this study explores the differences in the learning process between high- and low-achieving pre-clinical medical students from a theory of action perspective. METHODS: This study employed a qualitative instrumental case study design intended to compare two groups of students-high-achieving students (n = 14) and low-achieving students (n = 5), enrolled in pre-clinical medical studies at the Universiti Malaya, Malaysia. Data were collected through reflective journals and semi-structured interviews. Regarding journaling, participants were required to recall their learning experiences of the previous academic year. Two analysts coded the data and then compared the codes of high- and low-achieving students. The third analyst reviewed the codes. Themes were identified iteratively, working towards comparing the learning processes of high- and low-achieving students. RESULTS: Data analysis revealed four themes-motivation and expectation, study methods, self-management, and flexibility of mindset. First, high-achieving students were more motivated and had higher academic expectations than low-achieving students. Second, high-achieving students adopted study planning and deep learning approaches, whereas low-achieving students adopted superficial learning approaches. Third, in contrast to low-achieving students, high-achieving students exhibited better time management and studied consistently. Finally, high-achieving students proactively sought external support and made changes to overcome challenges. In contrast, low-achieving students were less resilient and tended to avoid challenges. CONCLUSION: Based on the theory of action, high-achieving students utilize positive governing variables, whereas low-achieving students are driven by negative governing variables. Hence, governing variable-based remediation is needed to help low-achieving students interrogate the motives behind their actions and realign positive governing variables, actions, and intended outcomes.Key MessagesThis study found four themes describing the differences between high- and low-achieving pre-clinical medical students: motivation and expectation, study methods, self-management, and flexibility of mindset.Based on the theory of action approach, high-achieving pre-clinical medical students are fundamentally different from their low-achieving peers in terms of their governing variables, with the positive governing variables likely to have guided them to act in a manner beneficial to and facilitating desirable academic performance.Governing variable-based remediation may help students interrogate the motives of their actions.
Asunto(s)
Estudiantes de Medicina , Humanos , Motivación , Investigación CualitativaRESUMEN
Melioidosis, also known as Whitmore's disease, is a potentially fatal infection caused by the Gram-negative bacteria Burkholderia pseudomallei with a mortality rate of 10-50%. The condition is a "glanders-like" illness prevalent in Southeast Asian and Northern Australian regions and can affect humans, animals, and sometimes plants. Melioidosis received the epithet "the great mimicker" owing to its vast spectrum of non-specific clinical manifestations, such as localised abscesses, septicaemia, pneumonia, septic arthritis, osteomyelitis, and encephalomyelitis, which often lead to misdiagnosis and ineffective treatment. To date, antibiotics remain the backbone of melioidosis treatment, which includes intravenous therapy with ceftazidime or meropenem, followed by oral therapy with TMP-SMX or amoxicillin/clavulanic acid and supported by adjunctive treatment. However, bacteria have developed resistance to a series of antibiotics, including clinically significant ones, during treatment. Therefore, phage therapy has gained unprecedented interest and has been proposed as an alternative treatment. Although no effective phage therapy has been published, the findings of experimental phage therapies suggest that the concept could be feasible. This article reviews the benefits and limitations of antibiotics and phage therapy in terms of established regimens, bacterial resistance, host specificity, and biofilm degradation.
RESUMEN
Burkholderia pseudomallei, a Gram-negative bacterial pathogen that causes melioidosis, is of public health importance in endemic areas including Malaysia. An investigation of the molecular epidemiology links of B. pseudomallei would contribute to better understanding of the clonal relationships, transmission dynamics and evolutionary change. Multilocus sequence typing (MLST) of 45 clinical B. pseudomallei isolates collected from sporadic melioidosis cases in Malaysia was performed. In addition, a total of 449 B. pseudomallei Malaysian strains submitted to the MLST database from 1964 until 2019 were included in the temporal analysis to determine the endemic sequence types (STs), emergence and re-emergence of ST(s). In addition, strain-specific distribution was evaluated using BURST tool. Genotyping of 45 clinical strains was resolved into 12 STs, and the majority were affiliated with ST46 (n = 11) and ST1342 (n = 7). Concomitantly, ST46 was the most prevalent ST in Malaysia, which was first reported in 1964. All the Malaysian B. pseudomallei strains were resolved into 76 different STs with 36 of them uniquely present only in Malaysia. ST1342 was most closely related to ST1034, in which both STs were unique to Malaysia and first isolated from soil samples in Pahang, a state in Malaysia. The present study revealed a high diversity of B. pseudomallei in Malaysia. Localized evolution giving rise to the emergence of new STs was observed, suggesting that host and environmental factors play a crucial role in the evolutionary changes in B. pseudomallei.
Asunto(s)
Burkholderia pseudomallei , Melioidosis , Animales , Burkholderia pseudomallei/genética , Malasia/epidemiología , Melioidosis/epidemiología , Melioidosis/microbiología , Melioidosis/veterinaria , Tipificación de Secuencias Multilocus/veterinaria , FilogeniaRESUMEN
Helicobacter pylori is well established as a causative agent for gastritis, peptic ulcer, and gastric cancer. Armed with various inimitable virulence factors, this Gram-negative bacterium is one of few microorganisms that is capable of circumventing the harsh environment of the stomach. The unique spiral structure, flagella, and outer membrane proteins accelerate H. pylori movement within the viscous gastric mucosal layers while facilitating its attachment to the epithelial cells. Furthermore, secretion of urease from H. pylori eases the acidic pH within the stomach, thus creating a niche for bacteria survival and replication. Upon gaining a foothold in the gastric epithelial lining, bacterial protein CagA is injected into host cells through a type IV secretion system (T4SS), which together with VacA, damage the gastric epithelial cells. H. pylori does not only establishes colonization in the stomach, but also manipulates the host immune system to permit long-term persistence. Prolonged H. pylori infection causes chronic inflammation that precedes gastric cancer. The current review provides a brief outlook on H. pylori survival tactics, bacterial-host interaction and their importance in therapeutic intervention as well as vaccine development.