Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
1.
Brain Sci ; 14(10)2024 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-39452002

RESUMEN

Background: Mental health issues are increasingly prominent worldwide, posing significant threats to patients and deeply affecting their families and social relationships. Traditional diagnostic methods are subjective and delayed, indicating the need for an objective and effective early diagnosis method. Methods: To this end, this paper proposes a lightweight detection method for multi-mental disorders with fewer data sources, aiming to improve diagnostic procedures and enable early patient detection. First, the proposed method takes Electroencephalography (EEG) signals as sources, acquires brain rhythms through Discrete Wavelet Decomposition (DWT), and extracts their approximate entropy, fuzzy entropy, permutation entropy, and sample entropy to establish the entropy-based matrix. Then, six kinds of conventional machine learning classifiers, including Support Vector Machine (SVM), k-Nearest Neighbors (kNN), Naive Bayes (NB), Generalized Additive Model (GAM), Linear Discriminant Analysis (LDA), and Decision Tree (DT), are adopted for the entropy-based matrix to achieve the detection task. Their performances are assessed by accuracy, sensitivity, specificity, and F1-score. Concerning these experiments, three public datasets of schizophrenia, epilepsy, and depression are utilized for method validation. Results: The analysis of the results from these datasets identifies the representative single-channel signals (schizophrenia: O1, epilepsy: F3, depression: O2), satisfying classification accuracies (88.10%, 75.47%, and 89.92%, respectively) with minimal input. Conclusions: Such performances are impressive when considering fewer data sources as a concern, which also improves the interpretability of the entropy features in EEG, providing a reliable detection approach for multi-mental disorders and advancing insights into their underlying mechanisms and pathological states.

2.
ACS Omega ; 9(30): 33119-33129, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39100334

RESUMEN

Optogenetics-based integrated photoelectrodes with high spatiotemporal resolution play an important role in studying complex neural activities. However, the photostimulation artifacts caused by the high level of integration and the high impedance of metal recording electrodes still hinder the application of photoelectrodes for optogenetic studies of neural circuits. In this study, a neural optrode fabricated on sapphire GaN material was proposed, and 4 µLEDs and 14 recording microelectrodes were monolithically integrated on a shank. Poly(3,4-ethylenedioxythiophene)/polystyrenesulfonate and multiwalled carbon nanotubes (PEDOT:PSS-MWCNT) and poly(3,4-ethylenedioxythiophene) and graphene oxide (PEDOT-GO) composite films were deposited on the surface of the recording microelectrode by electrochemical deposition. The results demonstrate that compared with the gold microelectrode, the impedances of both composite films reduced by more than 98%, and the noise amplitudes decreased by 70.73 and 87.15%, respectively, when exposed to light stimulation. Adjusting the high and low levels, we further reduced the noise amplitude by 48.3%. These results indicate that modifying the electrode surface by a polymer composite film can effectively enhance the performance of the microelectrode and further promote the application of the optrode in the field of neuroscience.

3.
IEEE Trans Biomed Circuits Syst ; 18(4): 872-884, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38300779

RESUMEN

Intracardiac wireless communication is crucial for the development of multi-chamber leadless cardiac pacemakers (LCP). However, the time-varying characteristics of intracardiac channel pose major challenges. As such, mastering the dynamic conduction properties of the intracardiac channel and modeling the equivalent time-varying channel are imperative for realizing LCP multi-chamber pacing. In this article, we present a limiting volume variational approach based on the electrical properties of cardiac tissues and trends in chamber volume variation. This approach was used to establish a quasi-static and a continuous time-varying equivalent circuit model of an intracardiac channel. An equivalence analysis was conducted on the model, and a discrete time-varying equivalent circuit phantom grounded on the cardiac cycle was subsequently established. Moreover, an ex vivo cardiac experimental platform was developed for verification. Results indicate that in the frequency domain, the congruence between phantom and ex vivo experimental outcomes is as high as 94.3%, affirming the reliability of the equivalent circuit model. In the time domain, the correlation is up to 75.3%, corroborating its effectiveness. The proposed time-varying equivalent circuit model exhibits stable and standardized dynamic attributes, serving as a powerful tool for addressing time-varying challenges and simplifying in vivo or ex vivo experiments.


Asunto(s)
Modelos Cardiovasculares , Marcapaso Artificial , Animales , Diseño de Equipo , Humanos
4.
Biosensors (Basel) ; 14(1)2024 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-38275310

RESUMEN

Carcinoembryonic antigen (CEACAM5), as a broad-spectrum tumor biomarker, plays a crucial role in analyzing the therapeutic efficacy and progression of cancer. Herein, we propose a novel biosensor based on specklegrams of tapered multimode fiber (MMF) and two-dimensional convolutional neural networks (2D-CNNs) for the detection of CEACAM5. The microfiber is modified with CEA antibodies to specifically recognize antigens. The biosensor utilizes the interference effect of tapered MMF to generate highly sensitive specklegrams in response to different CEACAM5 concentrations. A zero mean normalized cross-correlation (ZNCC) function is explored to calculate the image matching degree of the specklegrams. Profiting from the extremely high detection limit of the speckle sensor, variations in the specklegrams of antibody concentrations from 1 to 1000 ng/mL are measured in the experiment. The surface sensitivity of the biosensor is 0.0012 (ng/mL)-1 within a range of 1 to 50 ng/mL. Moreover, a 2D-CNN was introduced to solve the problem of nonlinear detection surface sensitivity variation in a large dynamic range, and in the search for image features to improve evaluation accuracy, achieving more accurate CEACAM5 monitoring, with a maximum detection error of 0.358%. The proposed fiber specklegram biosensing scheme is easy to implement and has great potential in analyzing the postoperative condition of patients.


Asunto(s)
Técnicas Biosensibles , Neoplasias , Humanos , Antígeno Carcinoembrionario , Proteínas Ligadas a GPI
5.
Brain Sci ; 13(6)2023 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-37371404

RESUMEN

Human alpha oscillation (7-13 Hz) has been extensively studied over the years for its connection with cognition. The individual alpha frequency (IAF), defined as the frequency that provides the highest power in the alpha band, shows a positive correlation with cognitive processes. The modulation of alpha activities has been accomplished through various approaches aimed at improving cognitive performance. However, very few studies focused on the direct modulation of IAF by shifting the peak frequency, and the understanding of IAF modulation remains highly limited. In this study, IAFs of healthy young adults were up-regulated through short-term neurofeedback training using haptic feedback. The results suggest that IAFs have good trainability and are up-regulated, also that IAFs are correlated with the enhanced cognitive performance in mental rotation and n-back tests compared to sham-neurofeedback control. This study demonstrates the feasibility of self-regulating IAF for cognition enhancement and provides potential therapeutic benefits for cognitive-impaired patients.

6.
Sci Rep ; 13(1): 6280, 2023 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-37072443

RESUMEN

Spiking neural networks (SNNs) are more energy- and resource-efficient than artificial neural networks (ANNs). However, supervised SNN learning is a challenging task due to non-differentiability of spikes and computation of complex terms. Moreover, the design of SNN learning engines is not an easy task due to limited hardware resources and tight energy constraints. In this article, a novel hardware-efficient SNN back-propagation scheme that offers fast convergence is proposed. The learning scheme does not require any complex operation such as error normalization and weight-threshold balancing, and can achieve an accuracy of around 97.5% on MNIST dataset using only 158,800 synapses. The multiplier-less inference engine trained using the proposed hard sigmoid SNN training (HaSiST) scheme can operate at a frequency of 135 MHz and consumes only 1.03 slice registers per synapse, 2.8 slice look-up tables, and can infer about 0.03[Formula: see text] features in a second, equivalent to 9.44 giga synaptic operations per second (GSOPS). The article also presents a high-speed, cost-efficient SNN training engine that consumes only 2.63 slice registers per synapse, 37.84 slice look-up tables per synapse, and can operate at a maximum computational frequency of around 50 MHz on a Virtex 6 FPGA.

7.
Opt Lett ; 48(4): 1048-1051, 2023 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-36791007

RESUMEN

An effective orthogonal signal generation method for heterodyne-detection-based phase-sensitive optical time-domain reflectometer systems is proposed to accelerate the phase demodulation process. The demodulation principle is based on the spatial phase shifting technique. By exploiting the relative phase difference between adjacent spatial sampling channels, the orthogonal signal is easily obtained from basic algebra calculations. The simulation and experimental results showed that the proposed method achieved >100% computation speed improvement compared with the conventional methods, with a slight trade-off in phase demodulation performance. Therefore, the proposed method is potentially beneficial for the distributed acoustic sensing technology for reducing the computation complexity of phase demodulation procedures.

8.
Micromachines (Basel) ; 13(12)2022 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-36557514

RESUMEN

A novel method for ultra-sensitive and ultra-fast temperature sensing has been successfully implemented by cascading Saganc rings to generate the Vernier effect and doing the same dispersive fibers to achieve the optical time-stretching effect. This is different from the traditional point fiber sensor demodulated by optical spectrum analyzer (OSA) whose demodulation speed is usually at the second level. The designed system maps the wavelength domain to the time domain through the dispersive fiber, which can realize the ultra-fast temperature monitoring at the nanosecond level. The cascaded Sagnac ring is composed of polarization maintaining fiber (PMF) which is significantly affected by the thermal-optical coefficient. When the temperature changes, the variation is as high as -6.228 nm/°C, which is 8.5 times higher than the sensitivity based on the single Sagnac ring system. Furthermore, through the optical time stretching scheme, the corresponding response sensitivity is increased from 0.997 ns/°C to 7.333 ns/°C, and the magnification is increased 7.4 times with a response speed of 50 MHz.

9.
Micromachines (Basel) ; 13(11)2022 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-36363857

RESUMEN

Optrodes, which are single shaft neural probes integrated with microelectrodes and optical light sources, offer a remarkable opportunity to simultaneously record and modulate neural activities using light within an animal's brain; however, a common problem with optrodes is that stimulation artifacts can be observed in the neural recordings of microelectrodes when the light source on the optrode is activated. These stimulation artifacts are undesirable contaminants, and they cause interpretation complexity when analyzing the recorded neural activities. In this paper, we tried to mitigate the effects of the stimulation artifacts by developing a low-noise, double-sided optrode integrated with multiple Electromagnetic Shielding (EMS) layers. The LED and microelectrodes were constructed separately on the top epitaxial and bottom substrate layers, and EMS layers were used to separate the microelectrodes and LED to reduce signal cross-talks. Compared with conventional single-sided designs, in which the LED and microelectrodes are constructed on the same side, our results indicate that double-sided optrodes can significantly reduce the presence of stimulation artifacts. In addition, the presence of stimulation artifacts can further be reduced by decreasing the voltage difference and increasing the rise/fall time of the driving LED pulsed voltage. With all these strategies, the presence of stimulation artifacts was significantly reduced by ~76%. As well as stimulation suppression, the sapphire substrate also provided strong mechanical stiffness and support to the optrodes, as well as improved electronic stability, thus making the double-sided sapphire optrodes highly suitable for optogenetic neuroscience research on animal models.

10.
Micromachines (Basel) ; 13(10)2022 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-36296050

RESUMEN

We demonstrated a new method for temperature measurement inside a fiber ring laser (FRL) cavity. Different from traditional FRL temperature sensing system which need additional filter working as a sensor, a micro-fiber coupler (MFC) was designed as a beam splitter, filter, and temperature sensor. In addition, isopropanol, a liquid with very high photothermal coefficient, is selectively filled in the MFC in order to improve the sensitivity of the system on temperature. In the dynamic range of 20-40 °C, we obtained a good temperature sensitivity of -1.29 nm/°C, with linear fitting up to 0.998. Benefiting from the advantages of laser sensing, the acquired laser has a 3 - dB bandwidth of less than 0.2 nm and a signal-to-noise ratio (SNR) of up to 40 dB. The proposed sensor has a low cost and high sensitivity, which is expected to be used in biomedical health detection, real-time monitoring of ocean temperature, and other application scenarios.

11.
Front Neurosci ; 16: 840983, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35360169

RESUMEN

Spatial hearing allows animals to rapidly detect and localize auditory events in the surrounding environment. The auditory brainstem plays a central role in processing and extracting binaural spatial cues through microsecond-precise binaural integration, especially for detecting interaural time differences (ITDs) of low-frequency sounds at the medial superior olive (MSO). A series of mechanisms exist in the underlying neural circuits for preserving accurate action potential timing across multiple fibers, synapses and nuclei along this pathway. One of these is the myelination of afferent fibers that ensures reliable and temporally precise action potential propagation in the axon. There are several reports of fine-tuned myelination patterns in the MSO circuit, but how specifically myelination influences the precision of sound localization remains incompletely understood. Here we present a spiking neural network (SNN) model of the Mongolian gerbil auditory brainstem with myelinated axons to investigate whether different axon myelination thicknesses alter the sound localization process. Our model demonstrates that axon myelin thickness along the contralateral pathways can substantially modulate ITD detection. Furthermore, optimal ITD sensitivity is reached when the MSO receives contralateral inhibition via thicker myelinated axons compared to contralateral excitation, a result that is consistent with previously reported experimental observations. Our results suggest specific roles of axon myelination for extracting temporal dynamics in ITD decoding, especially in the pathway of the contralateral inhibition.

12.
Opt Express ; 30(6): 10096-10109, 2022 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-35299420

RESUMEN

Phase-sensitive optical time-domain reflectometry (Φ-OTDR) has been proposed for distributed vibration sensing purpose over recent years. Emerging applications, including seismic and hydroacoustic wave detection, demand accurate low-frequency vibration reconstruction capability. We propose to use the direct-detection Φ-OTDR configuration to achieve quantitative demodulation of external low-frequency vibrations by phase-shifted dual-pulse probes. Simultaneous pulsing and phase shifting modulation is realized with a single acousto-optic modulator to generate such probes, relaxing the need for an additional optical phase modulator. In the experiments, vibrations with frequency as low as 0.5 Hz are successfully reconstructed with 10 m spatial resolution and 35 dB signal-to-noise ratio. Excellent linearity and repeatability are demonstrated between the optical phase demodulation results and the applied vibration amplitudes. The proposed method is capable of quantitative demodulation of low-frequency vibrations with a cost-effective system configuration and high computation efficiency, showing potential for commercial applications of distributed seismic or hydroacoustic wave acquisition.

13.
IEEE J Biomed Health Inform ; 26(6): 2493-2503, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35120013

RESUMEN

Recently, electroencephalography (EEG) signals have shown great potential for emotion recognition. Nevertheless, multichannel EEG recordings lead to redundant data, computational burden, and hardware complexity. Hence, efficient channel selection, especially single-channel selection, is vital. For this purpose, a technique termed brain rhythm sequencing (BRS) that interprets EEG based on a dominant brain rhythm having the maximum instantaneous power at each 0.2 s timestamp has been proposed. Then, dynamic time warping (DTW) is used for rhythm sequence classification through the similarity measure. After evaluating the rhythm sequences for the emotion recognition task, the representative channel that produces impressive accuracy can be found, which realizes single-channel selection accordingly. In addition, the appropriate time segment for emotion recognition is estimated during the assessments. The results from the music emotion recognition (MER) experiment and three emotional datasets (SEED, DEAP, and MAHNOB) indicate that the classification accuracies achieve 70-82% by single-channel data with a 10 s time length. Such performances are remarkable when considering minimum data sources as the primary concerns. Furthermore, the individual characteristics in emotion recognition are investigated based on the channels and times found. Therefore, this study provides a novel method to solve single-channel selection for emotion recognition.


Asunto(s)
Encéfalo , Electroencefalografía , Electroencefalografía/métodos , Emociones , Humanos , Almacenamiento y Recuperación de la Información
14.
Annu Int Conf IEEE Eng Med Biol Soc ; 2021: 4238-4241, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34892159

RESUMEN

One method by which the mammalian sound localization pathway localizes sound sources is by analyzing the microsecond-level difference between the arrival times of a sound at the two ears. However, how the neural circuits in the auditory brainstem precisely integrate signals from the two ears, and what the underlying mechanisms are, remains to be understood. Recent studies have reported that variations of axon myelination in the auditory brainstem produces various axonal conduction velocities and sophisticated temporal dynamics, which have not been well characterized in most existing models of sound localization circuits. Here, we present a spiking neural network model of the auditory brainstem to investigate how axon myelinations affect the precision of sound localization. Sound waves with different interaural time differences (ITDs) are encoded and used as stimuli, and the axon properties in the network are adjusted, and the corresponding axonal conduction delays are computed with a multi-compartment axon model. Through the simulation, the sensitivity of ITD perception varies with the myelin thickness of axons in the contralateral input pathways to the medial superior olive (MSO). The ITD perception becomes more precise when the contralateral inhibitory input propagates faster than the contralateral excitatory input. These results indicate that axon myelination and contralateral spike timing influence spatial hearing perception.


Asunto(s)
Localización de Sonidos , Animales , Percepción Auditiva , Tronco Encefálico , Audición , Redes Neurales de la Computación
15.
Artículo en Inglés | MEDLINE | ID: mdl-34891232

RESUMEN

The similarity is a fundamental measure from the homology theory in bioinformatics, and the biological sequence can be classified based on it. However, such an approach has not been utilized for electroencephalography (EEG)-based emotion recognition. To this end, the sequence generated by choosing the dominant brain rhythm owning maximum instantaneous power at each 0.2 s timestamp of the EEG signal has been proposed. Then, to recognize emotional arousal and valence, the similarity measures between pairwise sequences have been performed by dynamic time warping (DTW). After evaluations, the sequence that provides the highest accuracy has been obtained. Thus, the representative channel has been found. Besides, the appropriate time segment for emotion recognition has been estimated. Those findings helpfully exclude redundant data for assessing emotion. Results from the DEAP dataset displayed that the classification accuracies between 72%-75% can be realized by applying the single-channel data with a 5 s length, which is impressive when considering fewer data sources as the primary concern. Hence, the proposed idea would open a new way that uses the similarity measures of sequences for EEG-based emotion recognition.


Asunto(s)
Nivel de Alerta , Electroencefalografía , Encéfalo , Emociones , Almacenamiento y Recuperación de la Información
16.
Micromachines (Basel) ; 12(9)2021 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-34577704

RESUMEN

Integrated optrodes for optogenetics have been becoming a significant tool in neuroscience through the combination of offering accurate stimulation to target cells and recording biological signals simultaneously. This makes it not just be widely used in neuroscience researches, but also have a great potential to be employed in future treatments in clinical neurological diseases. To optimize the integrated optrodes, this paper aimed to investigate the influence of surface material and illumination upon the performance of the microelectrode/electrolyte interface and build a corresponding evaluation system. In this work, an integrated planar optrode with a blue LED and microelectrodes was designed and fabricated. The charge transfer mechanism on the interface was theoretically modeled and experimentally verified. An evaluation system for assessing microelectrodes was also built up. Using this system, the proposed model of various biocompatible surface materials on microelectrodes was further investigated under different illumination conditions. The influence of illumination on the microelectrode/electrolyte interface was the cause of optical artifacts, which interfere the biological signal recording. It was found that surface materials had a great effect on the charge transfer capacity, electrical stability and recoverability, photostability, and especially optical artifacts. The metal with better charge transfer capacity and electrical stability is highly possible to have a better performance on the optical artifacts, regardless of its electrical recoverability and photostability under the illumination conditions of optogenetics. Among the five metals used in our investigation, iridium served as the best surface material for the proposed integrated optrodes. Thus, optimizing the surface material for optrodes could reduce optical interference, enhance the quality of the neural signal recording for optogenetics, and thus help to advance the research in neuroscience.

17.
Micromachines (Basel) ; 12(5)2021 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-34065590

RESUMEN

We demonstrate a highly sensitive and practical fiber-based temperature sensor system. The sensor is constructed based on a fiber ring laser (FRL) as well as a side-polished fiber filled with isopropanol. The laser cavity of the sensing part fiber is polished by the wheel fiber polishing system with residual thickness (RT) is selected to detect the temperature in the FRL. Thanks to the high thermo-optic coefficient of isopropanol, the sensitivity of the proposed temperature sensor could be effectively improved by filling isopropanol in the cost-less side polished single mode fiber. Refractive index (RI) of isopropanol changes with the surrounding temperature variation allowing high-sensitivity temperature sensing. Experimental results demonstrate that the side polished fiber can efficiently excite high-order cladding modes which enhance the modular interference increase the interaction between the evanescent wave and the isopropanol. Besides, the results show that the sensitivity can be as high as 2 nm/°C in the temperature range of 25-35 °C.

18.
Sensors (Basel) ; 21(9)2021 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-33919007

RESUMEN

We demonstrate a new concept for an all-fiber inclinometer based on a tapered fiber Bragg grating (tFBG) in a fiber ring laser (FRL) with the capability of measuring the tilt angle and temperature simultaneously. The sensor performance is analyzed theoretically and investigated experimentally. The dependence of tilt angle on the spectral response in variable temperature conditions was measured. Two inclinometers with different lengths have been fabricated and characterized in FRL. The sensitivity is 0.583 dB/° and 0.849 dB/°, respectively, in the range of 0° to 90°. Thanks to the FRL system, narrow 3-dB bandwidth (<0.1 nm) and high optical signal-to-noise ratio (~60 dB) are achieved. The tFBG in the FRL system can be used for working as a temperature insensitive inclinometer. The results suggested that the proposed inclinometer has the advantages of compact size and convenient manufacture, enhancing its potential for application prospect.

19.
Opt Express ; 29(2): 2564-2576, 2021 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-33726449

RESUMEN

Based on the nonuniformly spaced microwave photonic delay-line filter technology, a new design of a generic optical fiber sensor network interrogation platform is proposed and demonstrated. Sensing information from different types of optical sensors embedded in filter taps is converted into the variations of delay time and amplitude of each filter tap individually. Information to be measured can be decoded from the complex temporal impulse response of the microwave photonic filter. As proof-of-concept, our proposed approach is verified by simulations and experimental demonstrations successfully. Four optical sensors of different types are simultaneously interrogated via inverse Fourier transform of the filter frequency response. The experiment results show good linearity between the variation of temporal impulse response and the variations of the twist, the lateral pressure, the transversal loading and the temperature. The sensitivity of the sensors in the proposed platform is -2.130×10-5 a.u/degree, 6.1039 ps/kPa, -1.9146×10-5 a.u/gram, and 5.1497 ps/°C, respectively. Compared to the conventional optical sensors interrogation system, the presented approach provides a centralized solution that works for different types of optical sensors and can be easily expanded to cover larger optical sensor networks.

20.
Sensors (Basel) ; 21(2)2021 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-33419134

RESUMEN

Intrabody communication (IBC) can achieve better power efficiency and higher levels of security than other traditional wireless communication technologies. Currently, the majority of research on the body channel characteristics of galvanic coupling IBC are motionless and have only been evaluated in the frequency domain. Given the long measuring times of traditional methods, the access to dynamic variations and the simultaneous evaluation of the time-frequency domain remains a challenge for dynamic body channels such as the cardiac channel. To address this challenge, we proposed a parallel measurement methodology with a multi-tone strategy and a time-parameter processing approach to obtain a time-frequency evaluation for dynamic body channels. A group search algorithm has been performed to optimize the crest factor of multitone excitation in the time domain. To validate the proposed methods, in vivo experiments, with both dynamic and motionless conditions were measured using the traditional method and the proposed method. The results indicate that the proposed method is more time efficient (Tmeas = 1 ms) with a consistent performance (ρc > 98%). Most importantly, it is capable of capturing dynamic variations in the body channel and provides a more comprehensive evaluation and richer information for the study of IBC.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...