Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Comput Methods Programs Biomed ; 219: 106754, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35364482

RESUMEN

BACKGROUND: The performance of traditional risk score systems to predict (post)-operative outcomes is limited. This weakness reduces confidence in its use to support clinical risk mitigation decisions. However, the rapid growth of health data in the last years offers principles to deal with some of these limitations. In this regard, the data allows the extraction of relevant information for both patients stratification and the rigorous identification of associated risk factors. The patients can then be targeted to specific preoperative optimization programs, thus contributing to the reduction of associated morbidity and mortality. OBJECTIVES: The main goal of this work is, therefore, to provide a clinical decision support system (CDSS) based on data-driven modeling methods for surgical risk prediction specific for cancer patients in Portugal. RESULTS: The result is IPOscore, a single web-based platform aimed at being an innovative approach to assist clinical decision-making in the surgical oncology domain. This system includes a database to store/manage the clinical data collected in a structured format, data visualization and analysis tools, and predictive machine learning models to predict postoperative outcomes in cancer patients. IPOscore also includes a pattern mining module based on biclustering to assess the discriminative power of a pattern towards postsurgical outcomes. Additionally, a mobile application is provided to this end. CONCLUSIONS: The IPOscore platform is a valuable tool for surgical oncologists not only for clinical data management but also as a preventative and predictive healthcare system. Currently, this clinical support tool is being tested at the Portuguese Institute of Oncology (IPO-Porto), and can be accessed online at https://iposcore.org.


Asunto(s)
Sistemas de Apoyo a Decisiones Clínicas , Neoplasias , Humanos , Internet , Aprendizaje Automático , Complicaciones Posoperatorias
2.
J Math Biol ; 83(4): 39, 2021 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-34553267

RESUMEN

Bone is constantly being renewed: in the adult skeleton, bone resorption and formation are in a tightly coupled balance, allowing for a constant bone density to be maintained. Yet this micro-environment provides the necessary conditions for the growth and proliferation of tumor cells, and thus bone is a common site for the development of metastases, mainly from primary breast and prostate cancer. Mathematical and computational models with differential equations can replicate this bone remodeling process. These models have been extended to include the effects of disruptive tumor pathologies in the bone dynamics, as metastases contribute to the decoupling between bone resorption and formation and to the self-perpetuating tumor growth cycle. Such models may also contemplate the counteraction effects of currently used therapies, and, in the case of treatments with drugs, their pharmocokinetics and pharmacodynamics. We present a thorough overview of biochemical models for bone remodeling, in the presence of a tumour together with anti-cancer and anti-resorptive therapy, formulated as systems of first-order differential equations, or simplified using variable order derivatives. The latter models, of which some are new to this paper, result in equations with fewer parameters, and allow accounting for anomalous diffusion processes. In this way, more compact and parsimonious models, that promptly highlight tumorous bone interactions, are achieved, providing an effective framework to counteract the loss of bone integrity on the affected areas.


Asunto(s)
Neoplasias Óseas , Neoplasias de la Próstata , Neoplasias Óseas/tratamiento farmacológico , Remodelación Ósea , Humanos , Masculino , Radiofármacos , Microambiente Tumoral
3.
J Theor Biol ; 391: 1-12, 2016 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-26657065

RESUMEN

Bone is a common site for the development of metastasis, as its microenvironment provides the necessary conditions for the growth and proliferation of cancer cells. Several mathematical models to describe the bone remodeling process and how osteoclasts and osteoblasts coupled action ensures bone homeostasis have been proposed and further extended to include the effect of cancer cells. The model proposed here includes the influence of the parathyroid hormone (PTH) as capable of triggering and regulating the bone remodeling cycle. It also considers the secretion of PTH-related protein (PTHrP) by cancer cells, which stimulates the production of receptor activator of nuclear factor kappa-B ligand (RANKL) by osteoblasts that activates osteoclasts, increasing bone resorption and the subsequent release of growth factors entrapped in the bone matrix, which induce tumor growth, giving rise to a self-perpetuating cycle known as the vicious cycle of bone metastases. The model additionally describes how the presence of metastases contributes to the decoupling between bone resorption and formation. Moreover, the effects of anti-cancer and anti-resorptive treatments, through chemotherapy and the administration of bisphosphonates or denosumab, are also included, along with their corresponding pharmacokinetics (PK) and pharmacodynamics (PD). The simulated models, available at http://sels.tecnico.ulisboa.pt/software/, are able to describe bone remodeling cycles, the growth of bone metastases and how treatment can effectively reduce tumor burden on bone and prevent loss of bone strength.


Asunto(s)
Neoplasias Óseas , Denosumab/uso terapéutico , Difosfonatos/uso terapéutico , Modelos Biológicos , Hormona Paratiroidea/metabolismo , Microambiente Tumoral , Animales , Neoplasias Óseas/tratamiento farmacológico , Neoplasias Óseas/metabolismo , Neoplasias Óseas/patología , Neoplasias Óseas/secundario , Humanos , Metástasis de la Neoplasia , Osteoblastos/metabolismo , Osteoblastos/patología , Osteoclastos/metabolismo , Osteoclastos/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...