Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Plant Dis ; 2021 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-33461317

RESUMEN

A year of forest health surveys has led to the first detection of Phytophthora ramorum in Del Norte County followed by the first wildland detection of the EU1 clonal lineage (Grunwald et al. 2009) of this pathogen in California. In July 2019, leaves were sampled from two tanoaks (Notholithocarpus densiflorus) and 16 California bay laurels (Umbellularia californica) in Jedediah Smith State Park in Del Norte County, the northernmost coastal County of California. Leaves displayed lesions normally associated with Sudden Oak Death (SOD) caused by P. ramorum and were discovered during the citizen science-based survey known as SOD Blitz (Meentemeyer et al. 2015). Samples were surface sterilized using 75% Ethanol and plated on PARPH-V8 agar (Jeffers and Martin 1986). After plating, DNA was extracted and amplified using two P. ramorum-specific assays (Hayden et al. 2006, Kroon et al. 2004). Leaves from two tanoaks exhibiting twig die-back had typical SOD lesions along the midvein, gave positive PCR results and yielded cultures with colony morphology, sporangia and chlamydospores typical of the NA1 lineage of P. ramorum originally isolated in California from tanoaks and coast live oaks (Quercus agrifolia) (Rizzo et al. 2002). The ITS locus and a portion of the Cox-1 locus were sequenced from DNA extracts of each culture using primers DC6-ITS4 (Bonants et al. 2004) and COXF4N-COXR4N (Kroon et al. 2004), respectively. ITS sequences (GB MN540639-40) were typical of P. ramorum and Cox-1 sequences (GB MN540142-3) perfectly matched the Cox-1 sequence of the NA1 lineage (GB DQ832718) (Kroon et al. 2004). Microsatellite alleles were generated as described in Croucher et al. (2013) for the two Del Norte cultures and for eight P. ramorum cultures, representative of the four main multilocus genotypes (MLGs) present in California, namely c1 (Santa Cruz/Commercial Nurseries), c3 (San Francisco Bay Area), c2 (Monterey County), and c4 (Humboldt County) (Croucher et al. 2013). The two Del Norte MLGs were identical to one another and most similar to MLG c1, with a single repeat difference at a single locus. SSR results suggest the inoculum source may not be from Humboldt County, neighboring to the South, but from a yet unidentified outbreak, possibly associated with ornamental plants. Jedediah Smith State Park was surveyed for 12 months following the initial detection, however the pathogen has yet to be re-isolated in that location. In July 2020, SOD symptomatic leaves from two tanoak trees exhibiting twig cankers were collected 8 Km north of Jedediah Smith State Park, where three additional tanoak trees displayed rapidly browned dead canopies consistent with late stage SOD. Leaves were processed as above. Colonies from these samples produced chlamydospores and sporangia typical of P. ramorum on PARPH-V8 agar, but displayed a growth rate faster than that of NA1 genotypes and were characterized by aerial hyphae, overall resembling the morphology of EU1 lineage colonies (Brasier 2003). The EU1 lineage was confirmed by the perfect match of the sequence of a portion of the Cox-1 gene (GB MW349116-7) with the Cox-1 sequence of EU1 genotypes (GB EU124926). The EU1 clonal lineage has been previously isolated from tanoaks in Oregon forests, approximately 55 Km to the North (Grünwald et al. 2016), but this is the first report for California wildlands and will require containment and government regulations. It is unknown whether the EU1 strains in Del Norte County originated from Oregon forests or elsewhere.

2.
PLoS Comput Biol ; 8(1): e1002328, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22241973

RESUMEN

Exotic pathogens and pests threaten ecosystem service, biodiversity, and crop security globally. If an invasive agent can disperse asymptomatically over long distances, multiple spatial and temporal scales interplay, making identification of effective strategies to regulate, monitor, and control disease extremely difficult. The management of outbreaks is also challenged by limited data on the actual area infested and the dynamics of spatial spread, due to financial, technological, or social constraints. We examine principles of landscape epidemiology important in designing policy to prevent or slow invasion by such organisms, and use Phytophthora ramorum, the cause of sudden oak death, to illustrate how shortfalls in their understanding can render management applications inappropriate. This pathogen has invaded forests in coastal California, USA, and an isolated but fast-growing epidemic focus in northern California (Humboldt County) has the potential for extensive spread. The risk of spread is enhanced by the pathogen's generalist nature and survival. Additionally, the extent of cryptic infection is unknown due to limited surveying resources and access to private land. Here, we use an epidemiological model for transmission in heterogeneous landscapes and Bayesian Markov-chain-Monte-Carlo inference to estimate dispersal and life-cycle parameters of P. ramorum and forecast the distribution of infection and speed of the epidemic front in Humboldt County. We assess the viability of management options for containing the pathogen's northern spread and local impacts. Implementing a stand-alone host-free "barrier" had limited efficacy due to long-distance dispersal, but combining curative with preventive treatments ahead of the front reduced local damage and contained spread. While the large size of this focus makes effective control expensive, early synchronous treatment in newly-identified disease foci should be more cost-effective. We show how the successful management of forest ecosystems depends on estimating the spatial scales of invasion and treatment of pathogens and pests with cryptic long-distance dispersal.


Asunto(s)
Ecosistema , Modelos Biológicos , Enfermedades de las Plantas/prevención & control , Enfermedades de las Plantas/parasitología , Árboles/parasitología , California , Simulación por Computador
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...