Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
2.
Nat Metab ; 3(8): 1058-1070, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34417591

RESUMEN

Identifying secreted mediators that drive the cognitive benefits of exercise holds great promise for the treatment of cognitive decline in ageing or Alzheimer's disease (AD). Here, we show that irisin, the cleaved and circulating form of the exercise-induced membrane protein FNDC5, is sufficient to confer the benefits of exercise on cognitive function. Genetic deletion of Fndc5/irisin (global Fndc5 knock-out (KO) mice; F5KO) impairs cognitive function in exercise, ageing and AD. Diminished pattern separation in F5KO mice can be rescued by delivering irisin directly into the dentate gyrus, suggesting that irisin is the active moiety. In F5KO mice, adult-born neurons in the dentate gyrus are morphologically, transcriptionally and functionally abnormal. Importantly, elevation of circulating irisin levels by peripheral delivery of irisin via adeno-associated viral overexpression in the liver results in enrichment of central irisin and is sufficient to improve both the cognitive deficit and neuropathology in AD mouse models. Irisin is a crucial regulator of the cognitive benefits of exercise and is a potential therapeutic agent for treating cognitive disorders including AD.


Asunto(s)
Cognición , Fibronectinas/metabolismo , Hormonas/metabolismo , Condicionamiento Físico Animal , Animales , Conducta Animal , Trastornos del Conocimiento/etiología , Trastornos del Conocimiento/metabolismo , Trastornos del Conocimiento/psicología , Modelos Animales de Enfermedad , Fibronectinas/genética , Eliminación de Gen , Expresión Génica , Ratones , Ratones Noqueados , Fenotipo
3.
Brain Plast ; 5(2): 147-159, 2020 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-33282678

RESUMEN

BACKGROUND: Despite considerable research on exercise-induced neuroplasticity in the brain, a major ongoing challenge in translating findings from animal studies to humans is that clinical and preclinical settings employ very different techniques. OBJECTIVE: Here we aim to bridge this divide by using diffusion tensor imaging MRI (DTI), an advanced imaging technique commonly applied in human studies, in a longitudinal exercise study with mice. METHODS: Wild-type mice were exercised using voluntary free-wheel running, and MRI scans were at baseline and after four weeks and nine weeks of running. RESULTS: Both hippocampal volume and fractional anisotropy, a surrogate for microstructural directionality, significantly increased with exercise. In addition, exercise levels correlated with effect size. Histological analysis showed more PDGFRα+ oligodendrocyte precursor cells in the corpus callosum of running mice. CONCLUSIONS: These results provide compelling in vivo support for the concept that similar adaptive changes occur in the brains of mice and humans in response to exercise.

4.
Prog Cardiovasc Dis ; 62(2): 172-178, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30844383

RESUMEN

The beneficial effects of exercise on the brain are well known. However, the underlying molecular mechanisms are much less well understood. Interestingly, myokines, hormones secreted by muscle in response to exercise, gained attention as such beneficial mediators. In this review, we will focus on FNDC5 and its secreted form, the newly discovered myokine "irisin". We will discuss their role in the beneficial effects of exercise and its potential application in neurodegenerative disorders.


Asunto(s)
Encéfalo/metabolismo , Ejercicio Físico/fisiología , Fibronectinas , Enfermedades Neurodegenerativas , Cognición/fisiología , Fibronectinas/sangre , Fibronectinas/metabolismo , Humanos , Músculo Esquelético/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Enfermedades Neurodegenerativas/prevención & control , Neuroprotección/fisiología
5.
FASEB J ; 33(5): 6154-6167, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30799631

RESUMEN

Cannabinoid receptor (CB)2 is an immune cell-localized GPCR that has been hypothesized to regulate the magnitude of inflammatory responses. However, there is currently no consensus as to the mechanism by which CB2 mediates its anti-inflammatory effects in vivo. To address this question, we employed a murine dorsal air pouch model with wild-type and CB2-/- 8-12-wk-old female and male C57BL/6 mice and found that acute neutrophil and lymphocyte antigen 6 complex, locus Chi monocyte recruitment in response to Zymosan was significantly enhanced in CB2-/- mice. Additionally, levels of matrix metalloproteinase 9 and the chemokines C-C motif chemokine ligand (CCL)2, CCL4, and C-X-C motif chemokine ligand 10 in CB2-/- pouch exudates were elevated at earlier time points. Importantly, using mixed bone marrow chimeras, we revealed that the proinflammatory phenotype in CB2-/- mice is neutrophil-intrinsic rather than stromal cell-dependent. Indeed, neutrophils isolated from CB2-/- mice exhibited an enhanced migration-related transcriptional profile and increased adhesive phenotype, and treatment of human neutrophils with a CB2 agonist blocked their endothelial transmigration. Overall, we have demonstrated that CB2 plays a nonredundant role during acute neutrophil mobilization to sites of inflammation and, as such, it could represent a therapeutic target for the development of novel anti-inflammatory compounds to treat inflammatory human diseases.-Kapellos, T. S., Taylor, L., Feuerborn, A., Valaris, S., Hussain, M. T., Rainger, G. E., Greaves, D. R., Iqbal, A. J. Cannabinoid receptor 2 deficiency exacerbates inflammation and neutrophil recruitment.


Asunto(s)
Movimiento Celular , Neutrófilos/inmunología , Receptor Cannabinoide CB2/deficiencia , Transcriptoma , Animales , Adhesión Celular , Células Cultivadas , Quimiocina CCL2/genética , Quimiocina CCL2/metabolismo , Quimiocina CCL4/genética , Quimiocina CCL4/metabolismo , Quimiocina CXCL10/genética , Quimiocina CXCL10/metabolismo , Femenino , Humanos , Inmunidad Innata , Masculino , Metaloproteinasa 9 de la Matriz/genética , Metaloproteinasa 9 de la Matriz/metabolismo , Ratones , Ratones Endogámicos C57BL , Neutrófilos/fisiología , Receptor Cannabinoide CB2/genética
6.
Antioxid Redox Signal ; 29(3): 237-256, 2018 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-29117706

RESUMEN

SIGNIFICANCE: Great attention has been placed on the link between metabolism and immune function giving rise to the term "immunometabolism." It is widely accepted that inflammation and oxidative stress are key processes that underlie metabolic complications during obesity, diabetes, and atherosclerosis. Therefore, identifying the mechanisms and mediators that are involved in the regulation of both inflammation and metabolic homeostasis is of high scientific and therapeutic interest. Recent Advances: G protein-coupled receptors (GPCRs) that signal in response to metabolites have emerged as attractive therapeutic targets in inflammatory disease. Critical Issues and Future Directions: In this review, we discuss recent findings about the physiological role of the main metabolite-sensing GPCRs, their implication in immunometabolic disorders, their principal endogenous and synthetic ligands, and their potential as drug targets in inflammation and metabolic disease. Antioxid. Redox Signal. 29, 237-256.


Asunto(s)
Inflamación/metabolismo , Enfermedades Metabólicas/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Animales , Humanos
7.
Front Immunol ; 8: 1621, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29209334

RESUMEN

Chemerin is a chemotactic protein that induces migration of several immune cells including macrophages, immature dendritic cells, and NK cells. Chemerin binds to three G protein-coupled receptors (GPCRs), including CCRL2. The exact function of CCRL2 remains unclear. CCRL2 expression is rapidly upregulated during inflammation, but it lacks the intracellular DRYLAIV motif required for classical GPCR downstream signalling pathways, and it has not been reported to internalise chemerin upon binding. The aim of this study was to investigate what role if any CCRL2 plays during acute inflammation. Using the zymosan- and thioglycollate-induced murine models of acute inflammation, we report that mice deficient in the Ccrl2 gene display exaggerated local and systemic inflammatory responses, characterised by increased myeloid cell recruitment. This amplified myeloid cell recruitment was associated with increased chemerin and CXCL1 levels. Furthermore, we report that the inflammatory phenotype observed in these mice is dependent upon elevated levels of endogenous chemerin. Antibody neutralisation of chemerin activity in Ccrl2-/- mice abrogated the amplified inflammatory responses. Importantly, chemerin did not directly recruit myeloid cells but rather increased the production of other chemotactic proteins such as CXCL1. Administration of recombinant chemerin to wild-type mice before inflammatory challenge recapitulated the increased myeloid cell recruitment and inflammatory mediator production observed in Ccrl2-/- mice. We have demonstrated that the absence of CCRL2 results in increased levels of local and systemic chemerin levels and exacerbated inflammatory responses during acute inflammatory challenge. These results further highlight the importance of chemerin as a therapeutic target in inflammatory diseases.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...