Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
ACS Nano ; 18(24): 15716-15728, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38847339

RESUMEN

Epitaxial graphene/ferromagnetic metal (Gr/FM) heterostructures deposited onto heavy metals have been proposed for the realization of spintronic devices because of their perpendicular magnetic anisotropy and sizable Dzyaloshinskii-Moriya interaction (DMI), allowing for both enhanced thermal stability and stabilization of chiral spin textures. However, establishing routes toward this goal requires the fundamental understanding of the microscopic origin of their unusual properties. Here, we elucidate the nature of the induced spin-orbit coupling (SOC) at Gr/Co interfaces on Ir. Through spin- and angle-resolved photoemission spectroscopy along with density functional theory, we show that the interaction of the heavy metals with the Gr layer via hybridization with the FM is the source of strong SOC in the Gr layer. Furthermore, our studies on ultrathin Co films underneath Gr reveal an energy splitting of ∼100 meV for in-plane and negligible for out-of-plane spin polarized Gr π-bands, consistent with a Rashba-SOC at the Gr/Co interface, which is either the fingerprint or the origin of the DMI. This mechanism vanishes at large Co thicknesses, where neither in-plane nor out-of-plane spin-orbit splitting is observed, indicating that Gr π-states are electronically decoupled from the heavy metal. The present findings are important for future applications of Gr-based heterostructures in spintronic devices.

2.
ACS Nano ; 16(7): 11182-11193, 2022 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-35770912

RESUMEN

We report on the magnetic properties of Dy atoms adsorbed on the (001) surface of SrTiO3. X-ray magnetic circular dichroism reveals slow relaxation of the Dy magnetization on a time scale of about 800 s at 2.5 K, unusually associated with an easy-plane magnetic anisotropy. We attribute these properties to Dy atoms occupying hollow adsorption sites on the TiO2-terminated surface. Conversely, Ho atoms adsorbed on the same surface show paramagnetic behavior down to 2.5 K. With the help of atomic multiplet simulations and first-principles calculations, we establish that Dy populates also the top-O and bridge sites on the coexisting SrO-terminated surface. A simple magnetization relaxation model predicts these two sites to have an even longer magnetization lifetime than the hollow site. Moreover, the adsorption of Dy on the insulating SrTiO3 crystal leads, regardless of the surface termination, to the formation of a spin-polarized two-dimensional electron gas of Ti 3dxy character, together with an antiferromagnetic Dy-Ti coupling. Our findings support the feasibility of tuning the magnetic properties of the rare-earth atoms by acting on the substrate electronic gas with electric fields.

3.
ACS Nano ; 14(5): 6285-6294, 2020 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-32293865

RESUMEN

Controlling interfacial interactions in magnetic/topological insulator heterostructures is a major challenge for the emergence of novel spin-dependent electronic phenomena. As for any rational design of heterostructures that rely on proximity effects, one should ideally retain the overall properties of each component while tuning interactions at the interface. However, in most inorganic interfaces, interactions are too strong, consequently perturbing, and even quenching, both the magnetic moment and the topological surface states at each side of the interface. Here, we show that these properties can be preserved using ligand chemistry to tune the interaction of magnetic ions with the surface states. By depositing Co-based porphyrin and phthalocyanine monolayers on the surface of Bi2Te3 thin films, robust interfaces are formed that preserve undoped topological surface states as well as the pristine magnetic moment of the divalent Co ions. The selected ligands allow us to tune the interfacial hybridization within this weak interaction regime. These results, which are in stark contrast with the observed suppression of the surface state at the first quintuple layer of Bi2Se3 induced by the interaction with Co phthalocyanines, demonstrate the capability of planar metal-organic molecules to span interactions from the strong to the weak limit.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...