Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
1.
J Forensic Sci ; 69(4): 1256-1267, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38647068

RESUMEN

Pinacolyl alcohol (PA), a key forensic marker for the nerve agent Soman (GD), is a particularly difficult analyte to detect by various analytical methods. In this work, we have explored the reaction between PA and 1,1'-carbonyldiimidazole (CDI) to yield pinacolyl 1H-imidazole-1-carboxylate (PIC), a product that can be conveniently detected by gas chromatography-mass spectrometry (GC-MS) and liquid chromatography-high-resolution mass spectrometry (LC-HRMS). Regarding its GC-MS profile, this new carbamate derivative of PA possesses favorable chromatographic features such as a sharp peak and a longer retention time (RT = 16.62 min) relative to PA (broad peak and short retention time, RT = 4.1 min). The derivative can also be detected by LC-HRMS, providing an avenue for the analysis of this chemical using this technique where PA is virtually undetectable unless present in large concentrations. From a forensic science standpoint, detection of this low molecular weight alcohol signals the past or latent presence of the nerve agent Soman (GD) in a given matrix (i.e., environmental or biological). The efficiency of the protocol was tested separately in the analysis and detection of PA by EI-GC-MS and LC-HRMS when present at a 10 µg/mL in a soil matrix featured in the 44th PT and in a glycerol-rich liquid matrix featured in the 48th Official Organization for the Prohibition of Chemical Weapons (OPCW) Proficiency Test when present at a 5 µg/mL concentration. In both scenarios, PA was successfully transformed into PIC, establishing the protocol as an additional tool for the analysis of this unnatural and unique nerve agent marker by GC-MS and LC-HRMS.


Asunto(s)
Cromatografía de Gases y Espectrometría de Masas , Soman , Soman/análisis , Soman/análogos & derivados , Humanos , Cromatografía Liquida , Imidazoles/química , Agentes Nerviosos/análisis , Agentes Nerviosos/química , Toxicología Forense/métodos , Sustancias para la Guerra Química/análisis , Espectrometría de Masas/métodos , Propanoles/química , Propanoles/análisis
2.
Anal Chem ; 95(35): 13064-13072, 2023 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-37607517

RESUMEN

While a significant body of work exists on the detection of commonly known trichothecene toxins, biological, environmental, and other transformational processes can generate many under-characterized and unknown modified trichothecenes. Lacking both analytical reference standards and associated mass spectral databases, identification of these modified compounds reflects both a challenge and a critical gap from forensic and public health perspectives. We report here the application of machine learning (ML) techniques toward identification of discriminative fragment ions from mass spectrometric data that can be exploited to detect evidence of type A and B trichothecenes. The goal of this work is to establish a new method for the identification of unknown, though structurally similar trichothecenes, by leveraging objective ML techniques. Discriminative fragments derived from a series of gradient-boosted machine learners are then used to develop ML-driven precursor ion scan (PIS) methods on a triple quadrupole mass spectrometer (QQQ) for screening of "unknown unknown" trichothecenes. Specifically, we apply the PIS method to a laboratory-synthesized trichothecene, a first step in demonstrating the power of alternative, machine learning-driven mass spectrometric methods.


Asunto(s)
Medicina Legal , Tricotecenos , Bases de Datos Factuales , Aprendizaje Automático
3.
J Forensic Sci ; 68(6): 1923-1931, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37578282

RESUMEN

The benzylation of three low molecular weight N,N-disubstituted ethanolamines related to chemical warfare agents (CWAs) to furnish derivatives with improved gas chromatography-mass spectrometry (GC-MS) profiles is described. Due to their low molecular weight and polar nature, N,N-disubstituted ethanolamines are notoriously difficult to detect by routine GC-MS analyses during Organisation for the Prohibition of Chemical Weapons (OPCW) proficiency tests (PTs), particularly in scenarios when they are present at low levels (~1-10 ppm) amidst more abundant interferences. Our studies revealed that the optimal derivatization conditions involved the treatment of the ethanolamine with benzyl bromide in the presence of an inorganic base (e.g., Na2 CO3 ) in dichloromethane at 55°C for 2 h. This optimized set of conditions was then successfully applied to the derivatization of N,N-dimethylethanolamine, N,N-diethylethanolamine and N,N-diisopropylethanolamine present separately at 1 and 10 µg/mL concentrations in a glycerol-rich matrix sample featured in the 48th OPCW PT. The benzylated derivatives of the three ethanolamines possessed retention times long enough to clear the massive glycerol-containing matrix interferences. The protocol herein is introduced as an alternative method for derivatization of these CWA and pharmaceutically important species and should find broad applicability in laboratories where routine forensic analysis is carried out.

4.
J Forensic Sci ; 68(6): 2138-2152, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37568257

RESUMEN

Detection of illicit drugs in the environment, particularly in soils, often suggests the present or past location of a clandestine production center for these substances. Thus, development of efficient methods for the analysis and detection of these chemicals is of paramount importance in the field of chemical forensics. In this work, a method involving the extraction and retrospective confirmation of fentanyl, acetylfentanyl, thiofentanyl, and acetylthiofentanyl using trichloroethoxycarbonylation chemistry in a high clay-content soil is presented. The soil was spiked separately with each fentanyl at two concentrations (1 and 10 µg/g) and their extraction accomplished using ethyl acetate and aqueous NH4 OH (pH ~ 11.4) with extraction recoveries ranging from ~56% to 82% for the high-concentration (10 µg/g) samples while ranging from ~68% to 83% for the low-concentration (1 µg/g) samples. After their extraction, residues containing each fentanyl were reacted with 2,2,2-trichloroethoxycarbonyl chloride (Troc-Cl) to generate two unique and predictable products from each opioid that can be used to retrospectively confirm their presence and identity using EI-GC-MS. The method's limit of detection (MDL/LOD) for Troc-norfentanyl and Troc-noracetylfentanyl were estimated to be 29.4 and 31.8 ng/mL in the organic extracts. In addition, the method's limit of quantitation for Troc-norfentanyl and Troc-noracetylfentanyl were determined to be 88.2 and 95.5 ng/mL, respectively. Collectively, the results presented herein strengthen the use of chloroformate chemistry as an additional chemical tool to confirm the presence of these highly toxic and lethal substances in the environment.


Asunto(s)
Electrones , Suelo , Cromatografía de Gases y Espectrometría de Masas/métodos , Arcilla , Estudios Retrospectivos , Fentanilo/análisis
5.
PLoS One ; 18(3): e0283181, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36996021

RESUMEN

The ability of the cyclodextrin-oxime construct 6-OxP-CD to bind and degrade the nerve agents Cyclosarin (GF), Soman (GD) and S-[2-[Di(propan-2-yl)amino]ethyl] O-ethyl methylphosphonothioate (VX) has been studied using 31P-nuclear magnetic resonance (NMR) under physiological conditions. While 6-OxP-CD was found to degrade GF instantaneously under these conditions, it was found to form an inclusion complex with GD and significantly improve its degradation (t1/2 ~ 2 hrs) relative over background (t1/2 ~ 22 hrs). Consequently, effective formation of the 6-OxP-CD:GD inclusion complex results in the immediate neutralization of GD and thus preventing it from inhibiting its biological target. In contrast, NMR experiments did not find evidence for an inclusion complex between 6-OxP-CD and VX, and the agent's degradation profile was identical to that of background degradation (t1/2 ~ 24 hrs). As a complement to this experimental work, molecular dynamics (MD) simulations coupled with Molecular Mechanics-Generalized Born Surface Area (MM-GBSA) calculations have been applied to the study of inclusion complexes between 6-OxP-CD and the three nerve agents. These studies provide data that informs the understanding of the different degradative interactions exhibited by 6-OxP-CD with each nerve agent as it is introduced in the CD cavity in two different orientations (up and down). For its complex with GF, it was found that the oxime in 6-OxP-CD lies in very close proximity (PGF⋯OOxime ~ 4-5 Å) to the phosphorus center of GF in the 'downGF' orientation for most of the simulation accurately describing the ability of 6-OxP-CD to degrade this nerve agent rapidly and efficiently. Further computational studies involving the center of masses (COMs) for both components (GF and 6-OxP-CD) also provided some insight on the nature of this inclusion complex. Distances between the COMs (ΔCOM) lie closer in space in the 'downGF' orientation than in the 'upGF' orientation; a correlation that seems to hold true not only for GF but also for its congener, GD. In the case of GD, calculations for the 'downGD' orientation showed that the oxime functional group in 6-OxP-CD although lying in close proximity (PGD⋯OOxime ~ 4-5 Å) to the phosphorus center of the nerve agent for most of the simulation, adopts another stable conformation that increase this distance to ~ 12-14 Å, thus explaining the ability of 6-OxP-CD to bind and degrade GD but with less efficiency as observed experimentally (t1/2 ~ 4 hr. vs. immediate). Lastly, studies on the VX:6-OxP-CD system demonstrated that VX does not form a stable inclusion complex with the oxime-bearing cyclodextrin and as such does not interact in a way that is conducive to an accelerated degradation scenario. Collectively, these studies serve as a basic platform from which the development of new cyclodextrin scaffolds based on 6-OxP-CD can be designed in the development of medical countermeasures against these highly toxic chemical warfare agents.


Asunto(s)
Sustancias para la Guerra Química , Ciclodextrinas , Contramedidas Médicas , Agentes Nerviosos , Soman , Oximas , Simulación de Dinámica Molecular , Compuestos Organofosforados/química , Fósforo
6.
Sci Rep ; 13(1): 2680, 2023 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-36792632

RESUMEN

Cyclodextrins (CDs) have been previously shown to display modest equilibrium binding affinities (Ka ~ 100-200 M-1) for the synthetic opioid analgesic fentanyl. In this work, we describe the synthesis of new CDs possessing extended thioalkylcarboxyl or thioalkylhydroxyl moieties and assess their binding affinity towards fentanyl hydrochloride. The optimal CD studied displays a remarkable affinity for the opioid of Ka = 66,500 M-1, the largest value reported for such an inclusion complex to date. One dimensional 1H Nuclear Magnetic Resonance (NMR) as well as Rotational Frame Overhauser Spectroscopy (2D-ROESY) experiments supported by molecular dynamics (MD) simulations suggest an unexpected binding behavior, with fentanyl able to bind the CD interior in one of two distinct orientations. Binding energies derived from the MD simulations work correlate strongly with NMR-derived affinities highlighting its utility as a predictive tool for CD candidate optimization. The performance of these host molecules portends their utility as platforms for medical countermeasures for opioid exposure, as biosensors, and in other forensic science applications.


Asunto(s)
Ciclodextrinas , Ciclodextrinas/química , Fentanilo/química , Analgésicos Opioides , Espectroscopía de Resonancia Magnética/métodos , Simulación de Dinámica Molecular
7.
Sci Rep ; 12(1): 21299, 2022 12 09.
Artículo en Inglés | MEDLINE | ID: mdl-36494565

RESUMEN

The use of benzyl trichloroacetimidates for the benzylation of phosphonic acid nerve agent markers under neutral, basic, and slightly acidic conditions is presented. The benzyl-derived phosphonic acids were detected and analyzed by Electron Ionization Gas Chromatography-Mass Spectrometry (EI-GC-MS). The phosphonic acids used in this work included ethyl-, cyclohexyl- and pinacolyl methylphosphonic acid, first pass hydrolysis products from the nerve agents ethyl N-2-diisopropylaminoethyl methylphosphonothiolate (VX), cyclosarin (GF) and soman (GD) respectively. Optimization of reaction parameters for the benzylation included reaction time and solvent, temperature and the effect of the absence or presence of catalytic acid. The optimized conditions for the derivatization of the phosphonic acids specifically for their benzylation, included neutral as well as catalytic acid (< 5 mol%) and benzyl 2,2,2-trichloroacetimidate in excess coupled to heating the mixture to 60 °C in acetonitrile for 4 h. While the neutral conditions for the method proved to be efficient for the preparation of the p-methoxybenzyl esters of the phosphonic acids, the acid-catalyzed process appeared to provide much lower yields of the products relative to its benzyl counterpart. The method's efficiency was tested in the successful derivatization and identification of pinacolyl methylphosphonic acid (PMPA) as its benzyl ester when present at a concentration of ~ 5 µg/g in a soil matrix featured in the Organisation for the Prohibition of Chemical Weapons (OPCW) 44th proficiency test (PT). Additionally, the protocol was used in the detection and identification of PMPA when spiked at ~ 10 µg/mL concentration in a fatty acid-rich liquid matrix featured during the 38th OPCW-PT. The benzyl derivative of PMPA was partially corroborated with the instrument's internal NIST spectral library and the OPCW central analytical database (OCAD v.21_2019) but unambiguously identified through comparison with a synthesized authentic standard. The method's MDL (LOD) values for the benzyl and the p-methoxybenzyl pinacolyl methylphosphonic acids were determined to be 35 and 63 ng/mL respectively, while the method's Limit of Quantitation (LOQ) was determined to be 104 and 189 ng/mL respectively in the OPCW-PT soil matrix evaluated.


Asunto(s)
Sustancias para la Guerra Química , Agentes Nerviosos , Agentes Nerviosos/análisis , Cromatografía de Gases y Espectrometría de Masas/métodos , Ácidos Fosforosos/química , Electrones , Suelo/química , Sustancias para la Guerra Química/análisis
8.
PLoS One ; 17(11): e0275931, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36322521

RESUMEN

Electron Impact Gas Chromatography-Mass Spectrometry (EI-GC-MS) and High Resolution Liquid Chromatography-Mass Spectrometry (HR-LC-MS) have been used in the analysis of products arising from the trichloroethoxycarbonylation of fentanyl and acetylfentanyl in urine and plasma matrices. The method involves the initial extraction of both synthetic opioids separately from the matrices followed by detection of the unique products that arise from their reaction with 2,2,2-trichloroethoxycarbonyl chloride (Troc-Cl), namely Troc-norfentanyl and Troc-noracetylfentanyl. The optimized protocol was successfully evaluated for its efficacy at detecting these species formed from fentanyl and acetylfentanyl when present at low and high levels in urine (fentanyl: 5 and 10 ng/mL and acetylfentanyl: 20 and 100 ng/mL) and plasma (fentanyl: 10 and 20 ng/mL and acetylfentanyl: 50 and 200 ng/mL), values that reflect levels reported in overdose victims. The HR-LC-MS method's LOQ (limit of quantitation) for the Troc-norfentanyl and Troc-noracetylfentanyl products was determined to be ~10 ng/mL for both species. Even though the superiority in the detection of these species by HR-LC-MS over EI-GC-MS, the latter method proved to be important in the detection of the second product from the reaction, namely 2-phenylethyl chloride that is crucial in the determination of the original opioid. This observation highlights the importance of using complimentary analytical techniques in the analysis of a sample, whether biological or environmental in nature. The method herein serves as a complementary, qualitative confirmation for the presence of a fentanyl in collected urine, plasma and by extension other biological samples amenable to the common extraction procedures described for opioid analysis. More importantly, the method's main strength comes from its ability to react with unknown fentanyls to yield products that can be not only detected by EI-GC-MS and HR-LC-MS but can then be used to retrospectively identify an unknown fentanyl.


Asunto(s)
Analgésicos Opioides , Electrones , Cromatografía Liquida/métodos , Analgésicos Opioides/química , Cromatografía de Gases y Espectrometría de Masas , Estudios Retrospectivos , Cloruros , Espectrometría de Masas en Tándem/métodos , Fentanilo/química
9.
Front Toxicol ; 4: 983415, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36032789

RESUMEN

Fentanyl is one of the most common opioid analgesics administered to patients undergoing surgery or for chronic pain management. While the side effects of chronic fentanyl abuse are recognized (e.g., addiction, tolerance, impairment of cognitive functions, and inhibit nociception, arousal, and respiration), it remains poorly understood what and how changes in brain activity from chronic fentanyl use influences the respective behavioral outcome. Here, we examined the functional and molecular changes to cortical neural network activity following sub-chronic exposure to two fentanyl concentrations, a low (0.01 µM) and high (10 µM) dose. Primary rat co-cultures, containing cortical neurons, astrocytes, and oligodendrocyte precursor cells, were seeded in wells on either a 6-well multi-electrode array (MEA, for electrophysiology) or a 96-well tissue culture plate (for serial endpoint bulk RNA sequencing analysis). Once networks matured (at 28 days in vitro), co-cultures were treated with 0.01 or 10 µM of fentanyl for 4 days and monitored daily. Only high dose exposure to fentanyl resulted in a decline in features of spiking and bursting activity as early as 30 min post-exposure and sustained for 4 days in cultures. Transcriptomic analysis of the complex cultures after 4 days of fentanyl exposure revealed that both the low and high dose induced gene expression changes involved in synaptic transmission, inflammation, and organization of the extracellular matrix. Collectively, the findings of this in vitro study suggest that while neuroadaptive changes to neural network activity at a systems level was detected only at the high dose of fentanyl, transcriptomic changes were also detected at the low dose conditions, suggesting that fentanyl rapidly elicits changes in plasticity.

10.
Ther Adv Infect Dis ; 9: 20499361211069264, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35059196

RESUMEN

INTRODUCTION: Several reports have emerged describing the long-term consequences of COVID-19 and its effects on multiple systems. METHODS: As further research is needed, we conducted a longitudinal observational study to report the prevalence and associated risk factors of the long-term health consequences of COVID-19 by symptom clusters in patients discharged from the Temporary COVID-19 Hospital (TCH) in Mexico City. Self-reported clinical symptom data were collected via telephone calls over 90 days post-discharge. Among 4670 patients, we identified 45 symptoms across eight symptom clusters (neurological; mood disorders; systemic; respiratory; musculoskeletal; ear, nose, and throat; dermatological; and gastrointestinal). RESULTS: We observed that the neurological, dermatological, and mood disorder symptom clusters persisted in >30% of patients at 90 days post-discharge. Although most symptoms decreased in frequency between day 30 and 90, alopecia and the dermatological symptom cluster significantly increased (p < 0.00001). Women were more prone than men to develop long-term symptoms, and invasive mechanical ventilation also increased the frequency of symptoms at 30 days post-discharge. CONCLUSION: Overall, we observed that symptoms often persisted regardless of disease severity. We hope these findings will help promote public health strategies that ensure equity in the access to solutions focused on the long-term consequences of COVID-19.

11.
Sci Rep ; 12(1): 1401, 2022 01 26.
Artículo en Inglés | MEDLINE | ID: mdl-35082365

RESUMEN

The efficient methylation of a panel of five industrial and environmentally-relevant chlorophenols (CPs) employing trimethyloxonium tetrafluoroborate (TMO) for their qualitative detection and identification by electron impact gas chromatography-mass spectrometry (EI-GC-MS) is presented. The protocol's execution is simple and smoothly converts the phenols into their O-methylated counterparts conveniently at ambient temperature. The efficiency of two versions of the protocol was successfully tested in their ability to simultaneously derivatize five CPs (2-chlorophenol, 2,4-dichlorophenol, 2,4,6-trichlorophenol, pentachlorophenol and triclosan) in six distinct, separate soil matrices (Nebraska EPA standard soil, Virginia Type A soil, Ottawa sand, Baker sand, Silt and Georgia EPA standard soil) when present at low levels (~ 10 µgg-1). The first version involves the direct derivatization of the spiked soils with the methylating salt while the second one involves an initial soil extraction step of the CPs followed by methylation. The MDL values for each methylated CP were determined and lower values were found (4.1-13.2 ng.mL-1) for both sand matrices (Ottawa and Baker) as well as for the Georgia EPA standard soil, while larger values (8.2-21.8 ng.mL-1) were found for the Virginia Type soil, Nebraska EPA standard soil and Silt. The presented protocol offers a safer and more practical alternative to the universally employed diazomethane method and can be readily applicable to matrices other than soils. Furthermore, the protocols described herein may find applicability to the methylation of other analytes bearing acidic protons.

12.
Inorg Chem ; 61(2): 807-817, 2022 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-34965111

RESUMEN

The unsaturated hexathia-18-crown-6 (UHT18C6) molecule was investigated for the extraction of Hg(II) in HCl and HNO3 media. This extractant can be directly compared to the recently studied saturated hexathia-18-crown-6 (HT18C6). The default conformation of the S lone pairs in UHT18C6 is endodentate, where the pocket of the charge density, according to the crystal structures, is oriented toward the center of the ring, which should allow better extraction for Hg(II) compared to the exodentate HT18C6. Batch study experiments showed that Hg(II) had better extraction at low acid molarity (ca. 99% in HCl and ca. 95% in HNO3), while almost no extraction was observed above 0.4 M HCl and 4 M HNO3 (<5%). Speciation studies were conducted with the goal of delineating a plausible extraction mechanism. Density functional theory calculations including relativistic effects were carried out on both Hg(II)-encapsulated HT18C6 and UHT18C6 complexes to shed light on the binding strength and the nature of bonding. Our calculations offer insights into the extraction mechanism. In addition to Hg(II), calculations were performed on the hypothetical divalent Cn(II) ion, and showed that HT18C6 and UHT18C6 could extract Cn(II). Finally, the extraction kinetics were explored to assess whether this crown can extract the short-lived Cn(II) species in a future online experiment.

13.
Crit Rev Anal Chem ; 52(8): 1938-1968, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34053394

RESUMEN

The rising number of deaths caused by fentanyl overdosing in the US due to the overwhelming illicit use of this synthetic opioid has started a global campaign to develop efficient ways to control its production and distribution as well as discovering efficient antidotes to mitigate its lethal effects. Another important vein of focused research established by various agencies lies in the development of efficient and practical protocols for the detection of this opioid and analogs thereof in various matrices, whether environmental or biological in nature, particularly in the field of gas chromatography-mass spectrometry (GC-MS). The following review will cover the literature dealing with the detection and identification of synthetic opioids belonging to the fentanyl class by GC-MS means and hyphenated versions of the technique. Detailed descriptions will be given for the GC-MS methods employed for the analysis of the opioid, starting with the nature of the extraction protocol employed prior to analysis to the actual findings presented by the cited reports. Great effort has gone into describing the methods involved in each paper in a detailed manner and these have been compiled by year in tables at the end of each section for the reader's convenience. Lastly, the review will end with concluding remarks about the state of GC-MS analysis with regards to these powerful opioids and what lies ahead for this analytical field.


Asunto(s)
Analgésicos Opioides , Fentanilo , Fentanilo/análisis , Fentanilo/química , Analgésicos Opioides/análisis , Analgésicos Opioides/química , Cromatografía de Gases y Espectrometría de Masas , Cromatografía Liquida , Espectrometría de Masas en Tándem/métodos
14.
Sci Rep ; 11(1): 22489, 2021 11 18.
Artículo en Inglés | MEDLINE | ID: mdl-34795347

RESUMEN

The one-step breakdown and derivatization of a panel of nine fentanyls to yield uniquely tagged products that can be detected by Electron Ionization Gas Chromatography-Mass Spectrometry (EI-GC-MS) is presented. The method involves the treatment of the synthetic opioids with 2,2,2-trichloroethoxycarbonyl chloride (TrocCl) at 60 °C for 3 h in dichloromethane and furnishes two products from one fentanyl molecule that can be used to retrospectively identify the original opioid. Parameters that were studied and fully optimized for the method included temperature, solvent, nature of scavenging base and reaction time. One of the two resulting products from the reaction bears the trichloroethoxycarbonyl (Troc) tag attached to the norfentanyl portion of the original opioid and greatly aids in the opioid detection and identification process. The methodology has been applied to the chemical modification of a panel of nine fentanyls and in all cases the molecular ion peak for the Troc-norfentanyl product bearing the distinctive trichloroethyl isotopic signature can be clearly observed. The method's LLOD was determined to be 10 ng/mL while its LLOQ was found to be 20 ng/mL. This methodology represents the first application of chloroformates in the chemical modification of this class of synthetic opioids that are notoriously inert to common derivatization strategies available for GC-MS analysis.

15.
Molecules ; 26(15)2021 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-34361784

RESUMEN

The field of gas chromatography-mass spectrometry (GC-MS) in the analysis of chemical warfare agents (CWAs), specifically those involving the organophosphorus-based nerve agents (OPNAs), is a continually evolving and dynamic area of research. The ever-present interest in this field within analytical chemistry is driven by the constant threat posed by these lethal CWAs, highlighted by their use during the Tokyo subway attack in 1995, their deliberate use on civilians in Syria in 2013, and their use in the poisoning of Sergei and Yulia Skripal in Great Britain in 2018 and Alexei Navalny in 2020. These events coupled with their potential for mass destruction only serve to stress the importance of developing methods for their rapid and unambiguous detection. Although the direct detection of OPNAs is possible by GC-MS, in most instances, the analytical chemist must rely on the detection of the products arising from their degradation. To this end, derivatization reactions mainly in the form of silylations and alkylations employing a vast array of reagents have played a pivotal role in the efficient detection of these products that can be used retrospectively to identify the original OPNA.


Asunto(s)
Agentes Nerviosos/análisis , Organofosfatos/análisis , Compuestos Organofosforados/análisis , Compuestos Organotiofosforados/análisis , Sarín/análisis , Soman/análisis , Alquilación , Fluorobencenos/química , Cromatografía de Gases y Espectrometría de Masas/métodos , Humanos , Hidrólisis , Metilación , Agentes Nerviosos/química , Organofosfatos/química , Compuestos Organofosforados/química , Compuestos Organotiofosforados/química , Sarín/química , Soman/química
16.
Sci Rep ; 11(1): 15567, 2021 07 30.
Artículo en Inglés | MEDLINE | ID: mdl-34330964

RESUMEN

Nerve agents have experienced a resurgence in recent times with their use against civilian targets during the attacks in Syria (2012), the poisoning of Sergei and Yulia Skripal in the United Kingdom (2018) and Alexei Navalny in Russia (2020), strongly renewing the importance of antidote development against these lethal substances. The current standard treatment against their effects relies on the use of small molecule-based oximes that can efficiently restore acetylcholinesterase (AChE) activity. Despite their efficacy in reactivating AChE, the action of drugs like 2-pralidoxime (2-PAM) is primarily limited to the peripheral nervous system (PNS) and, thus, provides no significant protection to the central nervous system (CNS). This lack of action in the CNS stems from their ionic nature that, on one end makes them very powerful reactivators and on the other renders them ineffective at crossing the Blood Brain Barrier (BBB) to reach the CNS. In this report, we describe the use of an iterative approach composed of parallel chemical and in silico syntheses, computational modeling, and a battery of detailed in vitro and in vivo assays that resulted in the identification of a promising, novel CNS-permeable oxime reactivator. Additional experiments to determine acute and chronic toxicity are ongoing.


Asunto(s)
Sistema Nervioso Central/metabolismo , Acetilcolinesterasa/metabolismo , Animales , Barrera Hematoencefálica/metabolismo , Cobayas , Masculino , Compuestos de Pralidoxima/farmacología
17.
Rapid Commun Mass Spectrom ; 35(15): e9123, 2021 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-33955039

RESUMEN

RATIONALE: Detection of 3-quinuclidinol (3Q), a marker for the chemical warfare agent 3-quinuclidinyl benzilate, is very difficult by gas chromatography-mass spectrometry (GC/MS), providing low, broad signals even when analyzed in isolated form. Therefore, a method that can convert 3Q into a substrate with enhanced detectability by GC/MS would be an important tool for its analysis. METHODS: 2,2,2-Trichloroethoxycarbonyl chloride (TrocCl) was used in the derivatization of 3Q in three different soils of varying composition and total organic content (Virginia type A soil, Nebraska EPA standard soil and Ottawa sand) when present at a 10 µg g-1 concentration in each. A direct derivatization protocol and one involving the pre-extraction of the analyte were evaluated for their individual efficiencies and subsequent analysis using electron ionization GC/MS. RESULTS: The practical derivatization of 3Q, when present at low levels (10 µg g-1 ) in three different soil matrices, was found to be rapid (1 h) and to take place smoothly at ambient temperature (and as low as 4°C). The method detection limit was determined to be 30 ng mL-1 for the Virginia type A soil, 49 ng mL-1 for the Nebraska EPA standard soil and 72 ng mL-1 for the Ottawa sand sample. CONCLUSIONS: An expedient and practical derivatization method for 3Q, a chemical warfare degradation product difficult to detect by GC/MS, has been realized using trichloroethyl chloroformate. The reaction provides 3Q-Troc, a derivative with better detectability than 3Q by electron ionization GC/MS such as peak sharpness and a unique mass spectrum for its unambiguous identification.

18.
Anal Bioanal Chem ; 413(12): 3145-3151, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33770208

RESUMEN

A derivatization protocol based on the acylation of pinacolyl alcohol (PA), an important marker for the nerve agent soman, is presented. The procedure provides a convenient means of detecting, by gas chromatography-mass spectrometry (GC-MS), PA when present at a low concentration in a complex glycerol/alcohol-rich matrix. While there are only two reports describing the specific analysis of PA in matrices at low concentrations, the protocol described herein represents the first of its kind in the analysis of PA in a highly reactive matrix. Two alternative paths for the protocol's execution are presented. The first involves the direct derivatization of the PA with either acetyl or benzoyl chloride; both reactions yield ester products with significantly different retention times than those of the interferences of the reactive glycerol-rich matrix and in areas of the GC-chromatogram featuring lower levels of matrix interferences. A second procedure involved an initial diethyl ether/aqueous extraction of the matrix; while the extraction was found to substantially remove many of the hydrophilic matrix components and improve the overall derivatization, it also led to some loss of PA available for the derivatization. Both protocols were applied to the successful derivatization and analysis of PA by GC-MS when present at a 5 µg.mL-1 concentration in a glycerol-rich matrix sample administered during the 48th Proficiency Test administered by the Organisation for the Prohibition of Chemical Weapons (OPCW).

19.
Clin Pharmacol Ther ; 109(3): 578-590, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33113208

RESUMEN

The only medication available currently to prevent and treat opioid overdose (naloxone) was approved by the US Food and Drug Administration (FDA) nearly 50 years ago. Because of its pharmacokinetic and pharmacodynamic properties, naloxone has limited utility under some conditions and would not be effective to counteract mass casualties involving large-scale deployment of weaponized synthetic opioids. To address shortcomings of current medical countermeasures for opioid toxicity, a trans-agency scientific meeting was convened by the US National Institute of Allergy and Infectious Diseases/National Institutes of Health (NIAID/NIH) on August 6 and 7, 2019, to explore emerging alternative approaches for treating opioid overdose in the event of weaponization of synthetic opioids. The meeting was initiated by the Chemical Countermeasures Research Program (CCRP), was organized by NIAID, and was a collaboration with the National Institute on Drug Abuse/NIH (NIDA/NIH), the FDA, the Defense Threat Reduction Agency (DTRA), and the Biomedical Advanced Research and Development Authority (BARDA). This paper provides an overview of several presentations at that meeting that discussed emerging new approaches for treating opioid overdose, including the following: (1) intranasal nalmefene, a competitive, reversible opioid receptor antagonist with a longer duration of action than naloxone; (2) methocinnamox, a novel opioid receptor antagonist; (3) covalent naloxone nanoparticles; (4) serotonin (5-HT)1A receptor agonists; (5) fentanyl-binding cyclodextrin scaffolds; (6) detoxifying biomimetic "nanosponge" decoy receptors; and (7) antibody-based strategies. These approaches could also be applied to treat opioid use disorder.


Asunto(s)
Analgésicos Opioides/efectos adversos , Sobredosis de Droga/terapia , Contramedidas Médicas , Naloxona/uso terapéutico , Antagonistas de Narcóticos/uso terapéutico , Epidemia de Opioides , Trastornos Relacionados con Opioides/terapia , Animales , Congresos como Asunto , Sobredosis de Droga/etiología , Sobredosis de Droga/mortalidad , Humanos , Naloxona/efectos adversos , Antagonistas de Narcóticos/efectos adversos , Epidemia de Opioides/mortalidad , Trastornos Relacionados con Opioides/complicaciones , Trastornos Relacionados con Opioides/mortalidad , Pronóstico , Medición de Riesgo , Factores de Riesgo
20.
Sci Rep ; 9(1): 17360, 2019 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-31758017

RESUMEN

The rapid and efficient difluoromethylation of a panel of eleven bisphenols (BPs) for their enhanced detection and identification by Electron-Ionization Gas Chromatography-Mass Spectrometry (EI-GC-MS) is presented. The derivatization employs the inexpensive, environmentally benign agent diethyl (bromodifluoromethyl) phosphonate (DBDFP) as a difluorocarbene-generating species that converts the BPs into bis-difluoromethylated ethers that can be detected and identified by GC-MS means. Key attributes of the protocol include its extreme rapidity (30 seconds) at ambient temperature, high specificity for BPs amidst other alcohol-containing analytes, and its biphasic nature that allows for its convenient adaptation to the analysis of BPs in organic as well as aqueous matrices. The protocol furnishes stable, novel BP ethers armed with a total of four fluorine atoms for their subsequent analysis by EI-GC-MS. Furthermore, each derivatized bisphenol exhibits unique retention times vastly different from their native counterparts leading to their unequivocal identification. The effectiveness and robustness of the developed methodology was applied to the tagging of the most famous member of this family of compounds, bisphenol-A (BPA), when spiked (at 1 µg.g-1 concentration) in the physically and compositionally complex Nebraska EPA standard soil. The method detection limit (MDL) for the bis-difluoromethylated BPA was determined to be 0.01 µg.mL-1. The bis-difluoromethylated BPA was conveniently detected on the organic layers from the biphasic, derivatized mixtures, highlighting the protocol's practicality and utility in the rapid, qualitative detection of this endocrine disruptor during environmental analysis.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...