Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Mol Metab ; 80: 101886, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38246589

RESUMEN

OBJECTIVE: The central melanocortin system is essential for the regulation of food intake and body weight. Agouti-related protein (AgRP) is the sole orexigenic component of the central melanocortin system and is conserved across mammalian species. AgRP is currently known to be expressed exclusively in the mediobasal hypothalamus, and hypothalamic AgRP-expressing neurons are essential for feeding. Here we characterized a previously unknown population of AgRP cells in the mouse hindbrain. METHODS: Expression of AgRP in the hindbrain was investigated using gene expression analysis, single-cell RNA sequencing, immunofluorescent analysis and multiple transgenic mice with reporter expressions. Activation of AgRP neurons was achieved by Designer Receptors Exclusively Activated by Designer Drugs (DREADD) and by transcranial focal photo-stimulation using a step-function opsin with ultra-high light sensitivity (SOUL). RESULTS: AgRP expressing cells were present in the area postrema (AP) and the adjacent subpostrema area (SubP) and commissural nucleus of the solitary tract (cNTS) of the mouse hindbrain (termed AgRPHind herein). AgRPHind cells consisted of locally projecting neurons as well as tanycyte-like cells. Food deprivation stimulated hindbrain Agrp expression as well as neuronal activity of subsets of AgRPHind cells. In adult mice that lacked hypothalamic AgRP neurons, chemogenetic activation of AgRP neurons resulted in hyperphagia and weight gain. In addition, transcranial focal photo-stimulation of hindbrain AgRP cells increased food intake in adult mice with or without hypothalamic AgRP neurons. CONCLUSIONS: Our study indicates that the central melanocortin system in the hindbrain possesses an orexigenic component, and that AgRPHind neurons stimulate feeding independently of hypothalamic AgRP neurons.


Asunto(s)
Hipotálamo , Melanocortinas , Ratones , Animales , Proteína Relacionada con Agouti/genética , Proteína Relacionada con Agouti/metabolismo , Hipotálamo/metabolismo , Ratones Transgénicos , Melanocortinas/metabolismo , Rombencéfalo/metabolismo , Mamíferos/metabolismo
2.
Cell Metab ; 35(9): 1613-1629.e8, 2023 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-37572666

RESUMEN

Hypothalamic gliosis associated with high-fat diet (HFD) feeding increases susceptibility to hyperphagia and weight gain. However, the body-weight-independent contribution of microglia to glucose regulation has not been determined. Here, we show that reducing microglial nuclear factor κB (NF-κB) signaling via cell-specific IKKß deletion exacerbates HFD-induced glucose intolerance despite reducing body weight and adiposity. Conversely, two genetic approaches to increase microglial pro-inflammatory signaling (deletion of an NF-κB pathway inhibitor and chemogenetic activation through a modified Gq-coupled muscarinic receptor) improved glucose tolerance independently of diet in both lean and obese rodents. Microglial regulation of glucose homeostasis involves a tumor necrosis factor alpha (TNF-α)-dependent mechanism that increases activation of pro-opiomelanocortin (POMC) and other hypothalamic glucose-sensing neurons, ultimately leading to a marked amplification of first-phase insulin secretion via a parasympathetic pathway. Overall, these data indicate that microglia regulate glucose homeostasis in a body-weight-independent manner, an unexpected mechanism that limits the deterioration of glucose tolerance associated with obesity.


Asunto(s)
Microglía , FN-kappa B , Humanos , Microglía/metabolismo , FN-kappa B/metabolismo , Obesidad/metabolismo , Peso Corporal/fisiología , Glucosa/metabolismo , Hipotálamo/metabolismo , Dieta Alta en Grasa
3.
Sci Signal ; 15(733): eabj8204, 2022 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-35536884

RESUMEN

Variants in the gene encoding ankyrin repeat and SOCS box-containing 4 (ASB4) are linked to human obesity. Here, we characterized the pathways underlying the metabolic functions of ASB4. Hypothalamic Asb4 expression was suppressed by fasting in wild-type mice but not in mice deficient in AgRP, which encodes Agouti-related protein (AgRP), an appetite-stimulating hormone, suggesting that ASB4 is a negative target of AgRP. Many ASB4 neurons in the brain were adjacent to AgRP terminals, and feeding induced by AgRP neuronal activation was disrupted in Asb4-deficient mice. Acute knockdown of Asb4 in the brain caused marked hyperphagia due to increased meal size, and Asb4 deficiency led to increased meal size and food intake at the onset of refeeding, when very large meals were consumed. Asb4-deficient mice were resistant to the meal-terminating effects of exogenously administered calcitonin and showed decreased neuronal expression of Calcr, which encodes the calcitonin receptor. Pro-opiomelanocortin (POMC) neurons in the arcuate nucleus in mice are involved in glucose homeostasis, and Asb4 deficiency specifically in POMC neurons resulted in glucose intolerance that was independent of obesity. Furthermore, individuals with type 2 diabetes showed reduced ASB4 abundance in the infundibular nuclei, the human equivalent of the arcuate nucleus. Together, our results indicate that ASB4 acts in the brain to improve glucose homeostasis and to induce satiety after substantial meals, particularly those after food deprivation.


Asunto(s)
Diabetes Mellitus Tipo 2 , Neuropéptidos , Proteína Relacionada con Agouti/genética , Proteína Relacionada con Agouti/metabolismo , Proteína Relacionada con Agouti/farmacología , Animales , Calcitonina/metabolismo , Calcitonina/farmacología , Diabetes Mellitus Tipo 2/metabolismo , Glucosa/metabolismo , Homeostasis , Hipotálamo/metabolismo , Ratones , Neuronas/metabolismo , Neuropéptidos/metabolismo , Obesidad/genética , Obesidad/metabolismo , Proopiomelanocortina/genética , Proopiomelanocortina/metabolismo , Proopiomelanocortina/farmacología
4.
Exp Mol Med ; 54(4): 393-402, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35474339

RESUMEN

The hypothalamus is a central regulator of body weight and energy homeostasis. There is increasing evidence that innate immune activation in the mediobasal hypothalamus (MBH) is a key element in the pathogenesis of diet-induced obesity. Microglia, the resident immune cells in the brain parenchyma, have been shown to play roles in diverse aspects of brain function, including circuit refinement and synaptic pruning. As such, microglia have also been implicated in the development and progression of neurological diseases. Microglia express receptors for and are responsive to a wide variety of nutritional, hormonal, and immunological signals that modulate their distinct functions across different brain regions. We showed that microglia within the MBH sense and respond to a high-fat diet and regulate the function of hypothalamic neurons to promote food intake and obesity. Neurons, glia, and immune cells within the MBH are positioned to sense and respond to circulating signals that regulate their capacity to coordinate aspects of systemic energy metabolism. Here, we review the current knowledge of how these peripheral signals modulate the innate immune response in the MBH and enable microglia to regulate metabolic control.


Asunto(s)
Hipotálamo , Obesidad , Dieta Alta en Grasa/efectos adversos , Metabolismo Energético , Humanos , Hipotálamo/metabolismo , Inmunidad Innata , Microglía/metabolismo , Obesidad/metabolismo
5.
Front Endocrinol (Lausanne) ; 12: 668396, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34122343

RESUMEN

In mammals, myeloid cells help maintain the homeostasis of peripheral metabolic tissues, and their immunologic dysregulation contributes to the progression of obesity and associated metabolic disease. There is accumulating evidence that innate immune cells also serve as functional regulators within the mediobasal hypothalamus (MBH), a critical brain region controlling both energy and glucose homeostasis. Specifically, microglia, the resident parenchymal myeloid cells of the CNS, play important roles in brain physiology and pathology. Recent studies have revealed an expanding array of microglial functions beyond their established roles as immune sentinels, including roles in brain development, circuit refinement, and synaptic organization. We showed that microglia modulate MBH function by transmitting information resulting from excess nutrient consumption. For instance, microglia can sense the excessive consumption of saturated fats and instruct neurons within the MBH accordingly, leading to responsive alterations in energy balance. Interestingly, the recent emergence of high-resolution single-cell techniques has enabled specific microglial populations and phenotypes to be profiled in unprecedented detail. Such techniques have highlighted specific subsets of microglia notable for their capacity to regulate the expression of lipid metabolic genes, including lipoprotein lipase (LPL), apolipoprotein E (APOE) and Triggering Receptor Expressed on Myeloid Cells 2 (TREM2). The discovery of this transcriptional signature highlights microglial lipid metabolism as a determinant of brain health and disease pathogenesis, with intriguing implications for the treatment of brain disorders and potentially metabolic disease. Here we review our current understanding of how changes in microglial lipid metabolism could influence the hypothalamic control of systemic metabolism.


Asunto(s)
Encefalopatías/patología , Homeostasis , Hipotálamo/patología , Metabolismo de los Lípidos , Lípidos/análisis , Enfermedades Metabólicas/patología , Microglía/metabolismo , Animales , Encefalopatías/etiología , Encefalopatías/metabolismo , Humanos , Hipotálamo/metabolismo , Enfermedades Metabólicas/etiología , Enfermedades Metabólicas/metabolismo
6.
Br J Anaesth ; 125(3): 298-307, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32624183

RESUMEN

BACKGROUND: Postoperative cognitive decline (PCD) requires microglial activation. Voltage-gated Kv1.3 potassium channels are involved in microglial activation. We determined the role of Kv1.3 in PCD and the efficacy and safety of inhibiting Kv1.3 with phenoxyalkoxypsoralen-1 (PAP-1) in preventing PCD in a mouse model. METHODS: After institutional approval, we assessed whether Kv1.3-deficient mice (Kv1.3-/-) exhibited PCD, evidenced by tibial-fracture surgery-induced decline in aversive freezing behaviour, and whether PAP-1 could prevent PCD and postoperative neuroinflammation in PCD-vulnerable diet-induced obese (DIO) mice. We also evaluated whether PAP-1 altered either postoperative peripheral inflammation or tibial-fracture healing. RESULTS: Freezing behaviour was unaltered in postoperative Kv1.3-/- mice. In DIO mice, PAP-1 prevented postoperative (i) attenuation of freezing behaviour (54 [17.3]% vs 33.4 [12.7]%; P=0.03), (ii) hippocampal microglial activation by size (130 [31] pixels vs 249 [49]; P<0.001) and fluorescence intensity (12 000 [2260] vs 20 800 [5080] absorbance units; P<0.001), and (iii) hippocampal upregulation of interleukin-6 (IL-6) (14.9 [5.7] vs 25.6 [10.4] pg mg-1; P=0.011). Phenoxyalkoxypsoralen-1 neither affected surgery-induced upregulation of plasma IL-6 nor cartilage and bone components of the surgical fracture callus. CONCLUSIONS: Microglial-mediated PCD requires Kv1.3 activity, determined by genetic and pharmacological targeting approaches. Phenoxyalkoxypsoralen-1 blockade of Kv1.3 prevented surgery-induced hippocampal microglial activation and neuroinflammation in mice known to be vulnerable to PCD. Regarding perioperative safety, these beneficial effects of PAP-1 treatment occurred without impacting fracture healing. Kv1.3 blockers, currently undergoing clinical trials for other conditions, may represent an effective and safe intervention to prevent PCD.


Asunto(s)
Disfunción Cognitiva/prevención & control , Encefalitis/prevención & control , Canal de Potasio Kv1.3/antagonistas & inhibidores , Complicaciones Posoperatorias/prevención & control , Cicatrización de Heridas/fisiología , Animales , Modelos Animales de Enfermedad , Ratones
7.
J Clin Invest ; 129(10): 4124-4137, 2019 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-31265435

RESUMEN

Pancreatic beta cells (ß-cells) differentiate during fetal life, but only postnatally acquire the capacity for glucose-stimulated insulin secretion (GSIS). How this happens is not clear. In exploring what molecular mechanisms drive the maturation of ß-cell function, we found that the control of cellular signaling in ß-cells fundamentally switched from the nutrient sensor target of rapamycin (mTORC1) to the energy sensor 5'-adenosine monophosphate-activated protein kinase (AMPK), and that this was critical for functional maturation. Moreover, AMPK was activated by the dietary transition taking place during weaning, and this in turn inhibited mTORC1 activity to drive the adult ß-cell phenotype. While forcing constitutive mTORC1 signaling in adult ß-cells relegated them to a functionally immature phenotype with characteristic transcriptional and metabolic profiles, engineering the switch from mTORC1 to AMPK signaling was sufficient to promote ß-cell mitochondrial biogenesis, a shift to oxidative metabolism, and functional maturation. We also found that type 2 diabetes, a condition marked by both mitochondrial degeneration and dysregulated GSIS, was associated with a remarkable reversion of the normal AMPK-dependent adult ß-cell signature to a more neonatal one characterized by mTORC1 activation. Manipulating the way in which cellular nutrient signaling pathways regulate ß-cell metabolism may thus offer new targets to improve ß-cell function in diabetes.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Células Secretoras de Insulina/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Transducción de Señal , Proteínas Quinasas Activadas por AMP/genética , Animales , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/patología , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/patología , Secreción de Insulina/genética , Células Secretoras de Insulina/patología , Diana Mecanicista del Complejo 1 de la Rapamicina/genética , Ratones , Ratones Noqueados
8.
Nat Metab ; 1(3): 314-320, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-32694719

RESUMEN

Tissue-resident myeloid cells initiate local inflammation in response to infectious or injurious stimuli. Sixteen years ago, macrophages in the adipose tissue (ATMs) were shown to undergo a form of activation in response to diet-induced obesity, thus leading to the conclusion that these macrophages sense a type of pro-inflammatory injury. ATMs are now known to be central to adipose tissue development, plasticity, maintenance and function. Indeed, their involvement in obesity may represent hijacking of these functions. More recently, microglia, 'CNS macrophages', have been shown to accumulate and undergo activation in response to dietary excess in the mediobasal hypothalamus (MBH), and early studies have implicated these cells as injury-responsive mediators of hypothalamic dysfunction. However, microglia are amazingly diverse cells now known to have moment-to-moment sensory functions and to communicate with neighbouring neurons to maintain and shape brain circuitry. Here, we build on this view, detailing our rapidly evolving understanding of microglial heterogeneity in the MBH and their roles as nutrient and environmental sensors. We propose that microglia, instead of simply responding to diet-induced damage, act as critical metabolic regulators that may coordinate a complex cellular network in the MBH. Understanding their roles in hypothalamic development and function should reveal unexpected mechanistic information relevant to important diseases such as obesity.


Asunto(s)
Hipotálamo/fisiología , Microglía/metabolismo , Tejido Adiposo/metabolismo , Animales , Dieta , Metabolismo Energético , Humanos , Hipotálamo/citología , Hipotálamo/metabolismo , Macrófagos/metabolismo , Células Mieloides/metabolismo
10.
Cell Metab ; 26(1): 185-197.e3, 2017 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-28683286

RESUMEN

Dietary excess triggers accumulation of pro-inflammatory microglia in the mediobasal hypothalamus (MBH), but the components of this microgliosis and its metabolic consequences remain uncertain. Here, we show that microglial inflammatory signaling determines the immunologic response of the MBH to dietary excess and regulates hypothalamic control of energy homeostasis in mice. Either pharmacologically depleting microglia or selectively restraining microglial NF-κB-dependent signaling sharply reduced microgliosis, an effect that includes prevention of MBH entry by bone-marrow-derived myeloid cells, and greatly limited diet-induced hyperphagia and weight gain. Conversely, forcing microglial activation through cell-specific deletion of the negative NF-κB regulator A20 induced spontaneous MBH microgliosis and cellular infiltration, reduced energy expenditure, and increased both food intake and weight gain even in absence of a dietary challenge. Thus, microglial inflammatory activation, stimulated by dietary excess, orchestrates a multicellular hypothalamic response that mediates obesity susceptibility, providing a mechanistic rationale for non-neuronal approaches to treat metabolic diseases.


Asunto(s)
Regulación del Apetito , Metabolismo Energético , Hipotálamo/inmunología , Inflamación/inmunología , Microglía/inmunología , Obesidad/inmunología , Animales , Hiperfagia/inmunología , Hiperfagia/metabolismo , Hiperfagia/fisiopatología , Hipotálamo/metabolismo , Hipotálamo/fisiopatología , Inflamación/metabolismo , Inflamación/fisiopatología , Masculino , Ratones , Ratones Endogámicos C57BL , Microglía/metabolismo , Microglía/patología , Células Mieloides/inmunología , Células Mieloides/metabolismo , Células Mieloides/patología , FN-kappa B/inmunología , FN-kappa B/metabolismo , Obesidad/metabolismo , Obesidad/fisiopatología , Transducción de Señal
11.
Cell Rep ; 19(11): 2257-2271, 2017 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-28614713

RESUMEN

Neurons expressing agouti-related protein (AgRP) are essential for feeding. The majority of these neurons are located outside the blood-brain barrier (BBB), allowing them to directly sense circulating metabolic factors. Here, we show that, in adult mice, AgRP neurons outside the BBB (AgRPOBBB) were rapidly ablated by peripheral administration of monosodium glutamate (MSG), whereas AgRP neurons inside the BBB and most proopiomelanocortin (POMC) neurons were spared. MSG treatment induced proliferation of tanycytes, the putative hypothalamic neural progenitor cells, but the newly proliferated tanycytes did not become neurons. Intriguingly, AgRPOBBB neuronal number increased within a week after MSG treatment, and newly emerging AgRP neurons were derived from post-mitotic cells, including some from the Pomc-expressing cell lineage. Our study reveals that the lack of protection by the BBB renders AgRPOBBB vulnerable to lesioning by circulating toxins but that the rapid re-emergence of AgRPOBBB is part of a reparative process to maintain energy balance.


Asunto(s)
Barrera Hematoencefálica/citología , Hipotálamo/citología , Neuronas/citología , Proopiomelanocortina/metabolismo , Animales , Transporte Biológico , Barrera Hematoencefálica/metabolismo , Hipotálamo/metabolismo , Ratones , Neuronas/metabolismo
12.
JCI Insight ; 2(7): e91229, 2017 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-28405620

RESUMEN

Surgery can induce cognitive decline, a risk that increases with advancing age. In rodents, postoperative cognitive decline (POCD) is associated with the inflammatory activation of hippocampal microglia. To examine the role of microglia in POCD, we inhibited the colony-stimulating factor 1 receptor (CSF1R) in adult mice, effectively depleting CNS microglia. Surgical trauma (tibial fracture) reduced the ability of mice to remember a conditioned response learned preoperatively, a deficit more pronounced and persistent in mice with diet-induced obesity (DIO). Whereas microglial depletion by itself did not affect learning or memory, perioperative microglial depletion remarkably protected mice, including those with DIO, from POCD. This protection was associated with reduced hippocampal levels of inflammatory mediators, abrogation of hippocampal recruitment of CCR2+ leukocytes, and higher levels of circulating inflammation-resolving factors. Targeting microglia may thus be a viable strategy to mitigate the development of POCD, particularly in those with increased vulnerability.


Asunto(s)
Disfunción Cognitiva/fisiopatología , Inflamación/fisiopatología , Microglía/citología , Complicaciones Posoperatorias/psicología , Receptores de Factor Estimulante de Colonias de Granulocitos y Macrófagos/antagonistas & inhibidores , Animales , Antiinflamatorios no Esteroideos/farmacología , Disfunción Cognitiva/etiología , Modelos Animales de Enfermedad , Miedo , Hipocampo/citología , Hipocampo/fisiopatología , Lipoxinas/sangre , Masculino , Ratones , Ratones Endogámicos C57BL , Microglía/patología , Neuronas/citología , Neuronas/patología , Compuestos Orgánicos/farmacología , Receptores CCR2/metabolismo , Transducción de Señal/efectos de los fármacos , Fracturas de la Tibia/cirugía
13.
Biochim Biophys Acta ; 1861(9 Pt A): 1083-1095, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27317983

RESUMEN

Adipogenesis is the process of differentiation of immature mesenchymal stem cells into adipocytes. Elucidation of the mechanisms that regulate adipocyte differentiation is key for the development of novel therapies for the control of obesity and related comorbidities. Cytosolic group IVA phospholipase A2 (cPLA2α) is the pivotal enzyme in receptor-mediated arachidonic acid (AA) mobilization and attendant eicosanoid production. Using primary multipotent cells and cell lines predetermined to become adipocytes, we show here that cPLA2α displays a proadipogenic function that occurs very early in the adipogenic process. Interestingly, cPLA2α levels decrease during adipogenesis, but cPLA2α-deficient preadipocytes exhibit a reduced capacity to differentiate into adipocytes, which affects early and terminal adipogenic transcription factors. Additionally, the absence of the phospholipase alters proliferation and cell-cycle progression that takes place during adipogenesis. Preconditioning of preadipocytes with AA increases the adipogenic capacity of these cells. Moreover, animals deficient in cPLA2α show resistance to obesity when fed a high fat diet that parallels changes in the expression of adipogenic transcription factors of the adipose tissue. Collectively, these results show that preadipocyte cPLA2α activation is a hitherto unrecognized factor for adipogenesis in vitro and in vivo.


Asunto(s)
Adipogénesis/genética , Diferenciación Celular/genética , Fosfolipasas A2 Grupo IV/genética , Obesidad/genética , Células 3T3-L1 , Adipocitos/metabolismo , Animales , Citosol/enzimología , Dieta Alta en Grasa , Fosfolipasas A2 Grupo IV/metabolismo , Metabolismo de los Lípidos/genética , Células Madre Mesenquimatosas/enzimología , Células Madre Mesenquimatosas/metabolismo , Ratones , Obesidad/patología
14.
Cell Rep ; 14(11): 2611-23, 2016 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-26971994

RESUMEN

Diets rich in saturated fatty acids (SFAs) produce a form of tissue inflammation driven by "metabolically activated" macrophages. We show that SFAs, when in excess, induce a unique transcriptional signature in both mouse and human macrophages that is enriched by a subset of ER stress markers, particularly IRE1α and many adaptive downstream target genes. SFAs also activate the NLRP3 inflammasome in macrophages, resulting in IL-1ß secretion. We found that IRE1α mediates SFA-induced IL-1ß secretion by macrophages and that its activation by SFAs does not rely on unfolded protein sensing. We show instead that the ability of SFAs to stimulate either IRE1α activation or IL-1ß secretion can be specifically reduced by preventing their flux into phosphatidylcholine (PC) or by increasing unsaturated PC levels. Thus, IRE1α is an unrecognized intracellular PC sensor critical to the process by which SFAs stimulate macrophages to secrete IL-1ß, a driver of diet-induced tissue inflammation.


Asunto(s)
Endorribonucleasas/metabolismo , Ácidos Grasos/farmacología , Inflamasomas/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Animales , Células de la Médula Ósea/citología , Células Cultivadas , Dieta , Estrés del Retículo Endoplásmico/efectos de los fármacos , Humanos , Interleucina-1beta/metabolismo , Lipopolisacáridos/toxicidad , Macrófagos/citología , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Fosfatidilcolinas/metabolismo , Análisis de Componente Principal , Reacción en Cadena en Tiempo Real de la Polimerasa , Transducción de Señal/efectos de los fármacos , Proteína 1 de Unión a la X-Box/genética , Proteína 1 de Unión a la X-Box/metabolismo
15.
Mol Metab ; 4(11): 881-9, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26629411

RESUMEN

BACKGROUND: The proper establishment of hypothalamic feeding circuits during early development has a profound influence on energy homeostasis, and perturbing this process could predispose individuals to obesity and its associated consequences later in life. The maturation of hypothalamic neuronal circuitry in rodents takes place during the initial postnatal weeks, and this coincides with a dramatic surge in the circulating level of leptin, which is known to regulate the outgrowth of key neuronal projections in the maturing hypothalamus. Coincidently, this early postnatal period also marks the rapid proliferation and expansion of astrocytes in the brain. METHODS: Here we examined the effects of leptin on the proliferative capacity of astrocytes in the developing hypothalamus by treating postnatal mice with leptin. Mutant mice were also generated to conditionally remove leptin receptors from glial fibrillary acidic protein (GFAP)-expressing cells in the postnatal period. RESULTS AND CONCLUSIONS: We show that GFAP-expressing cells in the periventricular zone of the 3rd ventricle were responsive to leptin during the initial postnatal week. Leptin enhanced the proliferation of astrocytes in the postnatal hypothalamus and conditional removal of leptin receptors from GFAP-expressing cells during early postnatal period limited astrocyte proliferation. While increasing evidence demonstrates a direct role of leptin in regulating astrocytes in the adult brain, and given the essential function of astrocytes in modulating neuronal function and connectivity, our study indicates that leptin may exert its metabolic effects, in part, by promoting hypothalamic astrogenesis during early postnatal development.

16.
Annu Rev Physiol ; 77: 131-60, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25668019

RESUMEN

Diet-induced obesity leads to devastating and common chronic diseases, fueling ongoing interest in determining new mechanisms underlying both obesity and its consequences. It is now well known that chronic overnutrition produces a unique form of inflammation in peripheral insulin target tissues, and efforts to limit this inflammation have met with some success in preserving insulin sensitivity in obese individuals. Recently, the activation of inflammatory pathways by dietary excess has also been observed among cells located in the mediobasal hypothalamus, a brain area that exerts central control over peripheral glucose, fat, and energy metabolism. Here we review progress in the field of diet-induced hypothalamic inflammation, drawing key distinctions between metabolic inflammation in the hypothalamus and that occurring in peripheral tissues. We focus on specific stimuli of the inflammatory response, the roles of individual hypothalamic cell types, and the links between hypothalamic inflammation and metabolic function under normal and pathophysiological circumstances. Finally, we explore the concept of controlling hypothalamic inflammation to mitigate metabolic disease.


Asunto(s)
Metabolismo Energético/fisiología , Hipotálamo/fisiopatología , Inflamación/fisiopatología , Metabolismo/fisiología , Animales , Dieta/efectos adversos , Humanos , Hipotálamo/patología , Enfermedades Metabólicas/fisiopatología , Microglía/fisiología , Obesidad/etiología , Obesidad/fisiopatología
17.
Cell Rep ; 9(6): 2124-38, 2014 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-25497089

RESUMEN

Diets rich in saturated fat produce inflammation, gliosis, and neuronal stress in the mediobasal hypothalamus (MBH). Here, we show that microglia mediate this process and its functional impact. Although microglia and astrocytes accumulate in the MBH of mice fed a diet rich in saturated fatty acids (SFAs), only the microglia undergo inflammatory activation, along with a buildup of hypothalamic SFAs. Enteric gavage specifically with SFAs reproduces microglial activation and neuronal stress in the MBH, and SFA treatment activates murine microglia, but not astrocytes, in culture. Moreover, depleting microglia abrogates SFA-induced inflammation in hypothalamic slices. Remarkably, depleting microglia from the MBH of mice abolishes inflammation and neuronal stress induced by excess SFA consumption, and in this context, microglial depletion enhances leptin signaling and reduces food intake. We thus show that microglia sense SFAs and orchestrate an inflammatory process in the MBH that alters neuronal function when SFA consumption is high.


Asunto(s)
Astrocitos/metabolismo , Grasas de la Dieta/metabolismo , Ácidos Grasos/metabolismo , Hipotálamo/metabolismo , Animales , Astrocitos/patología , Células Cultivadas , Grasas de la Dieta/efectos adversos , Ingestión de Alimentos , Metabolismo Energético , Ácidos Grasos/efectos adversos , Gliosis/etiología , Gliosis/metabolismo , Hipotálamo/citología , Inflamación/etiología , Inflamación/metabolismo , Leptina/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Neuronas/metabolismo , Neuronas/patología , Neuronas/fisiología , Transducción de Señal
18.
J Immunol ; 193(9): 4614-22, 2014 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-25252959

RESUMEN

Lipin-1 is a Mg(2+)-dependent phosphatidic acid phosphatase involved in the de novo synthesis of phospholipids and triglycerides. Using macrophages from lipin-1-deficient animals and human macrophages deficient in the enzyme, we show in this work that this phosphatase acts as a proinflammatory mediator during TLR signaling and during the development of in vivo inflammatory processes. After TLR4 stimulation lipin-1-deficient macrophages showed a decreased production of diacylglycerol and activation of MAPKs and AP-1. Consequently, the generation of proinflammatory cytokines like IL-6, IL-12, IL-23, or enzymes like inducible NO synthase and cyclooxygenase 2, was reduced. In addition, animals lacking lipin-1 had a faster recovery from endotoxin administration concomitant with a reduced production of harmful molecules in spleen and liver. These findings demonstrate an unanticipated role for lipin-1 as a mediator of macrophage proinflammatory activation and support a critical link between lipid biosynthesis and systemic inflammatory responses.


Asunto(s)
Lípidos/biosíntesis , Activación de Macrófagos/inmunología , Macrófagos/inmunología , Macrófagos/metabolismo , Proteínas Nucleares/genética , Fosfatidato Fosfatasa/genética , Receptores Toll-Like/metabolismo , Animales , Análisis por Conglomerados , Citocinas/metabolismo , Endotoxinas/administración & dosificación , Femenino , Expresión Génica , Perfilación de la Expresión Génica , Humanos , Inflamación/genética , Inflamación/inmunología , Mediadores de Inflamación/metabolismo , Activación de Macrófagos/genética , Masculino , Ratones , Ratones Noqueados , Proteínas Nucleares/deficiencia , Proteínas Nucleares/metabolismo , Fosfatidato Fosfatasa/deficiencia , Fosfatidato Fosfatasa/metabolismo , Transducción de Señal , Receptores Toll-Like/agonistas , Transcriptoma
19.
J Biol Chem ; 287(14): 10894-904, 2012 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-22334674

RESUMEN

Lipin-2 is a member of the lipin family of enzymes, which are key effectors in the biosynthesis of lipids. Mutations in the human lipin-2 gene are associated with inflammatory-based disorders; however, the role of lipin-2 in cells of the immune system remains obscure. In this study, we have investigated the role of lipin-2 in the proinflammatory action of saturated fatty acids in murine and human macrophages. Depletion of lipin-2 promotes the increased expression of the proinflammatory genes Il6, Ccl2, and Tnfα, which depends on the overstimulation of the JNK1/c-Jun pathway by saturated fatty acids. In contrast, overexpression of lipin-2 reduces the release of proinflammatory factors. Metabolically, the absence of lipin-2 reduces the cellular content of triacylglycerol in saturated fatty acid-overloaded macrophages. Collectively, these studies demonstrate a protective role for lipin-2 in proinflammatory signaling mediated by saturated fatty acids that occurs concomitant with an enhanced cellular capacity for triacylglycerol synthesis. The data provide new insights into the role of lipin-2 in human and murine macrophage biology and may open new avenues for controlling the fatty acid-related low grade inflammation that constitutes the sine qua non of obesity and associated metabolic disorders.


Asunto(s)
Ácidos Grasos/farmacología , Macrófagos/citología , Macrófagos/efectos de los fármacos , Proteínas Nucleares/metabolismo , Fosfatidato Fosfatasa/metabolismo , Transducción de Señal/efectos de los fármacos , Animales , Línea Celular , Citocinas/biosíntesis , Activación Enzimática/efectos de los fármacos , Ácidos Grasos/metabolismo , Humanos , Inflamación/genética , Inflamación/metabolismo , Inflamación/patología , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Macrófagos/metabolismo , Ratones , Monocitos/citología , Proteínas Nucleares/deficiencia , Fosfatidato Fosfatasa/deficiencia , Factor de Transcripción AP-1/metabolismo , Triglicéridos/metabolismo , Regulación hacia Arriba/efectos de los fármacos
20.
J Immunol ; 186(10): 6004-13, 2011 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-21478406

RESUMEN

The lipins have been described as metabolic enzymes that regulate lipid biosynthesis and also signaling processes by controlling the cellular concentration of bioactive lipids, phosphatidic acid, and diacylgycerol. In the present work we have studied the subcellular localization and role of lipin-1 in human monocyte-derived macrophages. Human macrophages express lipin-1 isoforms α and ß. A transfected lipin-1α-enhanced GFP construct associates with membranes of cellular organelles that can be stained with Nile Red. Colocalization experiments with lipid droplet (LD)-specific proteins such as adipophilin/adipose differentiation-related protein/perilipin 2 or TIP47/perilipin 3 show that both proteins colocalize with lipin-1α in the same cellular structures. Reduction of the expression levels of lipin-1 by small interfering RNA technology does not impair triacylglycerol biosynthesis but reduces the size of LDs formed in response to oleic acid. In agreement with these data, peritoneal macrophages from animals that carry a mutation in the Lpin-1 gene (fld animals) also produce less and smaller LDs in response to oleic acid. Mass spectrometry determinations demonstrate that the fatty acid composition of triacylglycerol in isolated LDs from lipin-1-deficient cells differs from that of control cells. Moreover, activation of cytosolic group IVA phospholipase A(2)α, a proinflammatory enzyme that is also involved in LD biogenesis, is also compromised in lipin-1-deficient cells. Collectively, these data suggest that lipin-1 associates with LDs and regulates the activation of cytosolic group IVA phospholipase A(2)α in human monocyte-derived macrophages.


Asunto(s)
Fosfolipasas A2 Grupo IV/metabolismo , Macrófagos/metabolismo , Proteínas Nucleares/metabolismo , Animales , Proteínas de Unión al ADN/metabolismo , Fosfolipasas A2 Grupo IV/genética , Humanos , Immunoblotting , Membranas Intracelulares/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Metabolismo de los Lípidos , Lípidos/análisis , Macrófagos/enzimología , Espectrometría de Masas , Proteínas de la Membrana/metabolismo , Ratones , Ratones Endogámicos BALB C , Mutación , Proteínas Nucleares/genética , Ácido Oléico/farmacología , Oxazinas , Perilipina-2 , Perilipina-3 , Fosfatidato Fosfatasa , Reacción en Cadena de la Polimerasa , Proteínas Gestacionales/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , ARN Interferente Pequeño , Triglicéridos/biosíntesis , Proteínas de Transporte Vesicular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA