Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Biomed Opt ; 29(3): 036502, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38515831

RESUMEN

Significance: The reprojection setup typical of oblique plane microscopy (OPM) limits the effective aperture of the imaging system, and therefore its efficiency and resolution. Large aperture system is only possible through the use of custom specialized optics. A full-aperture OPM made with off the shelf components would both improve the performance of the method and encourage its widespread adoption. Aim: To prove the feasibility of an OPM without a conventional reprojection setup, retaining the full aperture of the primary objective employed. Approach: A deformable lens based remote focusing setup synchronized with the rolling shutter of a complementary metal-oxide semiconductor detector is used instead of a traditional reprojection system. Results: The system was tested on microbeads, prepared slides, and zebrafish embryos. Resolution and pixel throughput were superior to conventional OPM with cropped apertures, and comparable with OPM implementations with custom made optical components. Conclusions: An easily reproducible approach to OPM imaging is presented, eliminating the conventional reprojection setup and exploiting the full aperture of the employed objective.


Asunto(s)
Lentes , Dispositivos Ópticos , Animales , Microscopía/métodos , Pez Cebra , Óptica y Fotónica , Óxidos
2.
Opt Lett ; 49(2): 278-281, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38194547

RESUMEN

A single-pixel camera combined with compressive sensing techniques is a promising fluorescence microscope scheme for acquiring a multidimensional dataset (space, spectrum, and lifetime) and for reducing the measurement time with respect to conventional microscope schemes. However, upon completing the acquisition, a computational step is necessary for image reconstruction and data analysis, which can be time-consuming, potentially canceling out the beneficial effect of compressive sensing. In this work, we propose and experimentally validate a fast-fit workflow based on global analysis and multiple linear fits, which significantly reduces the computation time from tens of minutes to less than 1 s. Moreover, as the method is interlaced with the measurement flow, it can be applied in parallel with the acquisitions.

3.
Biomed Opt Express ; 14(11): 5749-5763, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-38021118

RESUMEN

Diffuse Raman spectroscopy (DIRS) extends the high chemical specificity of Raman scattering to in-depth investigation of thick biological tissues. We present here a novel approach for time-domain diffuse Raman spectroscopy (TD-DIRS) based on a single-pixel detector and a digital micromirror device (DMD) within an imaging spectrometer for wavelength encoding. This overcomes the intrinsic complexity and high cost of detection arrays with ps-resolving time capability. Unlike spatially offset Raman spectroscopy (SORS) or frequency offset Raman spectroscopy (FORS), TD-DIRS exploits the time-of-flight distribution of photons to probe the depth of the Raman signal at a single wavelength with a single source-detector separation. We validated the system using a bilayer tissue-bone mimicking phantom composed of a 1 cm thick slab of silicone overlaying a calcium carbonate specimen and demonstrated a high differentiation of the two Raman signals. We reconstructed the Raman spectra of the two layers, offering the potential for improved and quantitative material analysis. Using a bilayer phantom made of porcine muscle and calcium carbonate, we proved that our system can retrieve Raman peaks even in the presence of autofluorescence typical of biomedical tissues. Overall, our novel TD-DIRS setup proposes a cost-effective and high-performance approach for in-depth Raman spectroscopy in diffusive media.

4.
Lab Chip ; 24(1): 34-46, 2023 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-37791882

RESUMEN

Heterogeneity investigation at the single-cell level reveals morphological and phenotypic characteristics in cell populations. In clinical research, heterogeneity has important implications in the correct detection and interpretation of prognostic markers and in the analysis of patient-derived material. Among single-cell analysis, imaging flow cytometry allows combining information retrieved by single cell images with the throughput of fluidic platforms. Nevertheless, these techniques might fail in a comprehensive heterogeneity evaluation because of limited image resolution and bidimensional analysis. Light sheet fluorescence microscopy opened new ways to study in 3D the complexity of cellular functionality in samples ranging from single-cells to micro-tissues, with remarkably fast acquisition and low photo-toxicity. In addition, structured illumination microscopy has been applied to single-cell studies enhancing the resolution of imaging beyond the conventional diffraction limit. The combination of these techniques in a microfluidic environment, which permits automatic sample delivery and translation, would allow exhaustive investigation of cellular heterogeneity with high throughput image acquisition at high resolution. Here we propose an integrated optofluidic platform capable of performing structured light sheet imaging flow cytometry (SLS-IFC). The system encompasses a multicolor directional coupler equipped with a thermo-optic phase shifter, cylindrical lenses and a microfluidic network to generate and shift a patterned light sheet within a microchannel. The absence of moving parts allows a stable alignment and an automated fluorescence signal acquisition during the sample flow. The platform enables 3D imaging of an entire cell in about 1 s with a resolution enhancement capable of revealing sub-cellular features and sub-diffraction limit details.


Asunto(s)
Imagenología Tridimensional , Microfluídica , Humanos , Microscopía Fluorescente/métodos , Citometría de Flujo/métodos , Imagenología Tridimensional/métodos
5.
ACS Photonics ; 9(11): 3563-3572, 2022 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-36411818

RESUMEN

Fourier-plane microscopy is a powerful tool for measuring the angular optical response of a plethora of materials and photonic devices. Among them, optical microcavities feature distinctive energy-momentum dispersions, crucial for a broad range of fundamental studies and applications. However, measuring the whole momentum space (k-space) with sufficient spectral resolution using standard spectroscopic techniques is challenging, requiring long and alignment-sensitive scans. Here, we introduce a k-space hyperspectral microscope, which uses a common-path birefringent interferometer to image photoluminescent organic microcavities, obtaining an angle- and wavelength-resolved view of the samples in only one measurement. The exceptional combination of angular and spectral resolution of our technique allows us to reconstruct a three-dimensional (3D) map of the cavity dispersion in the energy-momentum space, revealing the polarization-dependent behavior of the resonant cavity modes. Furthermore, we apply our technique for the characterization of a dielectric nanodisk metasurface, evidencing the angular and spectral behavior of its anapole mode. This approach is able to provide a complete optical characterization for materials and devices with nontrivial angle-/wavelength-dependent properties, fundamental for future developments in the fields of topological photonics and optical metamaterials.

6.
Opt Express ; 30(17): 30246-30259, 2022 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-36242132

RESUMEN

Structured Illumination Microscopy (SIM) is a key technology for high resolution and super-resolution imaging of biological cells and molecules. The spread of portable and easy-to-align SIM systems requires the development of novel methods to generate a light pattern and to shift it across the field of view of the microscope. Here we show a miniaturized chip that incorporates optical waveguides, splitters, and phase shifters, to generate a 2D structured illumination pattern suitable for SIM microscopy. The chip creates three point-sources, coherent and controlled in phase, without the need for further alignment. Placed in the pupil of a microscope's objective, the three sources generate a hexagonal illumination pattern on the sample, which is spatially translated thanks to thermal phase shifters. We validate and use the chip, upgrading a commercial inverted fluorescence microscope to a SIM setup and we image biological sample slides, extending the resolution of the microscope.


Asunto(s)
Iluminación , Dispositivos Ópticos , Microscopía Fluorescente/métodos
7.
Microsc Microanal ; : 1-10, 2022 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-35698867

RESUMEN

Three-dimensional fluorescence microscopy is a key technology for inspecting biological samples, ranging from single cells to entire organisms. We recently proposed a novel approach called spatially modulated Selective Volume Illumination Microscopy (smSVIM) to suppress illumination artifacts and to reduce the required number of measurements using an LED source. Here, we discuss a new strategy based on smSVIM for imaging large transparent specimens or voluminous chemically cleared tissues. The strategy permits steady mounting of the sample, achieving uniform resolution over a large field of view thanks to the synchronized motion of the illumination lens and the camera rolling shutter. Aided by a tailored deconvolution method for image reconstruction, we demonstrate significant improvement of the resolution at different magnification using samples of varying sizes and spatial features.

8.
Parasit Vectors ; 15(1): 52, 2022 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-35151358

RESUMEN

Physical methods to control pest arthropods are increasing in importance, but detailed knowledge of the effects of some of these methods on the target organisms is lacking. The aim of this study was to use light sheet fluorescence microscopy (LSFM) in anatomical studies of blood-sucking arthropods in vivo to assess the suitability of this method to investigate the morphological structures of arthropods and changes in these structures over time, using the human louse Pediculus humanus (Phthiraptera: Pediculidae) as sample organism. Plasma treatment was used as an example of a procedure employed to control arthropods. The lice were prepared using an artificial membrane feeding method involving the ingestion of human blood alone and human blood with an added fluorescent dye in vitro. It was shown that such staining leads to a notable enhancement of the imaging contrast with respect to unstained whole lice and internal organs that can normally not be viewed by transmission microscopy but which become visible by this approach. Some lice were subjected to plasma treatment to inflict damage to the organisms, which were then compared to untreated lice. Using LSFM, a change in morphology due to plasma treatment was observed.These results demonstrate that fluorescence staining coupled with LSFM represents a powerful and straightforward method enabling the investigation of the morphology-including anatomy-of blood-sucking lice and other arthropods.


Asunto(s)
Artrópodos , Infestaciones por Piojos , Pediculus , Animales , Colorantes , Ingestión de Alimentos , Humanos , Membranas Artificiales , Microscopía Fluorescente
9.
Prog Biophys Mol Biol ; 168: 66-80, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34153330

RESUMEN

Compressed sensing (CS) is a signal processing approach that solves ill-posed inverse problems, from under-sampled data with respect to the Nyquist criterium. CS exploits sparsity constraints based on the knowledge of prior information, relative to the structure of the object in the spatial or other domains. It is commonly used in image and video compression as well as in scientific and medical applications, including computed tomography and magnetic resonance imaging. In the field of fluorescence microscopy, it has been demonstrated to be valuable for fast and high-resolution imaging, from single-molecule localization, super-resolution to light-sheet microscopy. Furthermore, CS has found remarkable applications in the field of mesoscopic imaging, facilitating the study of small animals' organs and entire organisms. This review article illustrates the working principles of CS, its implementations in optical imaging and discusses several relevant uses of CS in the field of fluorescence imaging from super-resolution microscopy to mesoscopy.


Asunto(s)
Imagen por Resonancia Magnética , Procesamiento de Señales Asistido por Computador , Algoritmos , Animales , Microscopía Fluorescente , Imagen Óptica
10.
Sci Rep ; 11(1): 15723, 2021 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-34344932

RESUMEN

In multi-view fluorescence microscopy, each angular acquisition needs to be aligned with care to obtain an optimal volumetric reconstruction. Here, instead, we propose a neat protocol based on auto-correlation inversion, that leads directly to the formation of inherently aligned tomographies. Our method generates sharp reconstructions, with the same accuracy reachable after sub-pixel alignment but with improved point-spread-function. The procedure can be performed simultaneously with deconvolution further increasing the reconstruction resolution.

11.
Opt Lett ; 46(6): 1353-1356, 2021 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-33720185

RESUMEN

Multispectral/hyperspectral fluorescence lifetime imaging microscopy (λFLIM) is a promising tool for studying functional and structural biological processes. The rich information content provided by a multidimensional dataset is often in contrast with the acquisition speed. In this work, we develop and experimentally demonstrate a wide-field λFLIM setup, based on a novel time-resolved 18×1 single-photon avalanche diode array detector working in a single-pixel camera scheme, which parallelizes the spectral detection, reducing measurement time. The proposed system, which implements a single-pixel camera with a compressive sensing scheme, represents an optimal microscopy framework towards the design of λFLIM setups.

12.
Anal Methods ; 12(32): 4007-4014, 2020 08 28.
Artículo en Inglés | MEDLINE | ID: mdl-32760980

RESUMEN

Crystalline solids can exhibit photoluminescence when properly excited by sufficiently energetic light radiation. Following excitation, different radiative and non-radiative recombination pathways can occur that are informative of the energetic structure of the material as well as of the presence of crystal defects and impurities. Usually, the characterization of the optical emission of crystalline materials is achieved through the study of emission spectra as a function of the excitation wavelength. A different approach employs variable excitation fluence to populate the energetic levels until saturation, which promotes the emission from other radiative and non-radiative pathways. The method is particularly effective for understanding conduction phenomena and studying charge recombination channels in semiconductor materials. In this work, we propose its application for characterizing radiative recombination paths in crystalline pigments. The approach has been tested in spectroscopy mode for the identification of paints in a model painting and in micro-imaging modality for the study of paint stratigraphies. We demonstrate that the method is highly informative of the nature of different recombination paths in crystalline pigments and allows a deeper characterization of the emission from luminescent paints with respect to the conventional steady-state photoluminescence approach.

13.
Sci Rep ; 10(1): 12771, 2020 07 29.
Artículo en Inglés | MEDLINE | ID: mdl-32728161

RESUMEN

Optical Projection Tomography (OPT) is a powerful three-dimensional imaging technique used for the observation of millimeter-scaled biological samples, compatible with bright-field and fluorescence contrast. OPT is affected by spatially variant artifacts caused by the fact that light diffraction is not taken into account by the straight-light propagation models used for reconstruction. These artifacts hinder high-resolution imaging with OPT. In this work we show that, by using a multiview imaging approach, a 3D reconstruction of the bright-field contrast can be obtained without the diffraction artifacts typical of OPT, drastically reducing the amount of acquired data, compared to previously reported approaches. The method, purely based on bright-field contrast of the unstained sample, provides a comprehensive picture of the sample anatomy, as demonstrated in vivo on Arabidopsis thaliana and zebrafish embryos. Furthermore, this bright-field reconstruction can be implemented on practically any multi-view light-sheet fluorescence microscope without complex hardware modifications or calibrations, complementing the fluorescence information with tissue anatomy.

14.
Biomed Opt Express ; 11(3): 1697-1706, 2020 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-32206436

RESUMEN

We present a systematic characterization of the optical properties (µa and µs') of nine representative ex vivo porcine tissues over a broadband spectrum (650-1100 nm). We applied time-resolved diffuse optical spectroscopy measurements for recovering the optical properties of porcine tissues depicting a realistic representation of the tissue heterogeneity and morphology likely to be found in different ex vivo tissues. The results demonstrate a large spectral and inter-tissue variation of optical properties. The data can be exploited for planning or simulating ex vivo experiments with various biophotonics techniques, or even to construct artificial structures mimicking specific pathologies exploiting the wide assortment in optical properties.

15.
Proc Natl Acad Sci U S A ; 117(1): 752-760, 2020 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-31871183

RESUMEN

Arabidopsis thaliana glutamate receptor-like (GLR) channels are amino acid-gated ion channels involved in physiological processes including wound signaling, stomatal regulation, and pollen tube growth. Here, fluorescence microscopy and genetics were used to confirm the central role of GLR3.3 in the amino acid-elicited cytosolic Ca2+ increase in Arabidopsis seedling roots. To elucidate the binding properties of the receptor, we biochemically reconstituted the GLR3.3 ligand-binding domain (LBD) and analyzed its selectivity profile; our binding experiments revealed the LBD preference for l-Glu but also for sulfur-containing amino acids. Furthermore, we solved the crystal structures of the GLR3.3 LBD in complex with 4 different amino acid ligands, providing a rationale for how the LBD binding site evolved to accommodate diverse amino acids, thus laying the grounds for rational mutagenesis. Last, we inspected the structures of LBDs from nonplant species and generated homology models for other GLR isoforms. Our results establish that GLR3.3 is a receptor endowed with a unique amino acid ligand profile and provide a structural framework for engineering this and other GLR isoforms to investigate their physiology.


Asunto(s)
Aminoácidos/metabolismo , Proteínas de Arabidopsis/ultraestructura , Arabidopsis/metabolismo , Dominios Proteicos/genética , Receptores de Glutamato/ultraestructura , Arabidopsis/genética , Proteínas de Arabidopsis/agonistas , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Sitios de Unión/genética , Calcio/metabolismo , Cristalografía por Rayos X , Citosol/metabolismo , Ligandos , Mutación , Raíces de Plantas/metabolismo , Plantas Modificadas Genéticamente , Receptores de Glutamato/genética , Receptores de Glutamato/metabolismo , Plantones/metabolismo , Relación Estructura-Actividad
16.
Biomed Opt Express ; 10(11): 5776-5788, 2019 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-31799046

RESUMEN

Light sheet fluorescence microscopy has become one of the most widely used techniques for three-dimensional imaging due to its high speed and low phototoxicity. Further improvements in 3D microscopy require limiting the light exposure of the sample and increasing the volumetric acquisition rate. We hereby present an imaging technique that allows volumetric reconstruction of the fluorescent sample using spatial modulation on a selective illumination volume. We demonstrate that this can be implemented using an incoherent LED source, avoiding shadowing artifacts, typical of light sheet microscopy. Furthermore, we show that spatial modulation allows the use of Compressive Sensing, reducing the number of modulation patterns to be acquired. We present results on zebrafish embryos which prove that selective spatial modulation can be used to reconstruct relatively large volumes without any mechanical movement. The technique yields an accurate reconstruction of the sample anatomy even at significant compression ratios, achieving higher volumetric acquisition rate and reducing photodamage biological samples.

17.
Anal Chem ; 91(5): 3421-3428, 2019 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-30706704

RESUMEN

Paints based on cadmium sulfide (CdS) were popular among artists beginning in the mid-19th century. Some paint formulations are prone to degrade, discoloring and disfiguring paintings where they have been used. Pablo Picasso's Femme (Époque des "Demoiselles d'Avignon") (1907) includes two commercial formulations of CdS: one is visibly degraded and now appears brownish yellow, while the other appears relatively intact and is vibrant yellow. This observation inspired the study reported here of the photoluminescence emission from trap states of the two CdS paints, complemented by data from multispectral imaging, X-ray fluorescence spectroscopy, micro-FTIR, and SEM-EDS. The two paints exhibit trap state emissions that differ in terms of spectrum, intensity, and decay kinetics. In the now-brownish yellow paint, trap state emission is highly favored with respect to near band edge optical recombination. This observation suggests a higher density of surface defects in the now-brownish yellow paint that promotes the surface reactivity of CdS particles and their subsequent paint degradation. CdS is a semiconductor, and surface defects in semiconductors can trap free charge carriers; this interaction becomes stronger at reduced particle size or, equivalently, with increased surface to volume ratio. Here, we speculate that the strong trap state emission in the now-brownish cadmium yellow paint is linked to the presence of CdS particles with a nanocrystalline phase, possibly resulting from a low degree of calcination during pigment synthesis. Taken together, the results presented here demonstrate how photoluminescence studies can probe surface defects in CdS paints and lead to an improved understanding of their complex degradation mechanisms.

18.
Analyst ; 144(6): 1876-1880, 2019 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-30810548

RESUMEN

The first detailed analysis of FLIM applications for Mg cell imaging is presented. We employed the Mg-sensitive fluorescent dye named DCHQ5, a derivative of diaza-18-crown-6 ethers appended with two 8-hydroxyquinoline groups, to perform fluorescence lifetime imaging in control and Mg deprived SaOS-2 live cells, which contain different concentrations of magnesium. We found that the lifetime maps are almost uniform all over the cells and, most relevantly, we showed that the ratio of the amplitude terms is related to the magnesium intracellular concentration.


Asunto(s)
Neoplasias Óseas/metabolismo , Magnesio/metabolismo , Imagen Óptica/métodos , Osteosarcoma/metabolismo , Espectrometría de Fluorescencia/métodos , Humanos , Magnesio/análisis , Células Tumorales Cultivadas
19.
Methods Mol Biol ; 1925: 87-101, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30674019

RESUMEN

Calcium imaging in plants requires a high-resolution microscope, able to perform volumetric acquisition in a few seconds, inducing as low photobleaching and phototoxicity as possible to the sample. Light sheet fluorescence microscopy offers these capabilities, with the further chance to mount the sample in vertical position, mimicking the plant's growth and physiological conditions.A protocol for plant preparation and mounting in a light sheet microscope is presented. First, the growth of Arabidopsis thaliana in a sample holder compatible with light sheet microscopy is described. Then, the requirements for sample alignment and image acquisition are detailed. Finally, the image processing steps to analyze calcium oscillations are discussed, with particular emphasis on ratiometric calcium imaging in Arabidopsis root hairs.


Asunto(s)
Arabidopsis/metabolismo , Señalización del Calcio , Calcio/metabolismo , Microscopía Fluorescente/métodos , Raíces de Plantas/metabolismo , Arabidopsis/crecimiento & desarrollo , Arabidopsis/ultraestructura , Procesamiento de Imagen Asistido por Computador/métodos , Luz , Imagen Óptica/métodos , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/ultraestructura
20.
Drug Des Devel Ther ; 12: 3235-3245, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30323557

RESUMEN

Ongoing studies of physiological and pathological processes have led to a corresponding need for new radiopharmaceuticals, especially when studies are limited by the absence of a particular radiolabeled target. Thus, the development of new radioactive tracers is highly relevant and can represent a significant contribution to efforts to elucidate important phenomena in biology. Currently, theranostics represents a new frontier in the fields of medicine and nuclear medicine, with the same compound being used for both diagnosis and treatment. In the human body, copper (Cu) is the third most abundant metal and it plays a crucial role in many biological functions. Correspondingly, in various acquired and inherited pathological conditions, such as cancer and Alzheimer's disease, alterations in Cu levels have been found. Moreover, a wide spectrum of neurodegenerative disorders are associated with higher or lower levels of Cu, as well as inappropriately bound or distributed levels of Cu in the brain. In human cells, the membrane protein, hCtr1, binds Cu in its Cu(I) oxidation state in an energy-dependent manner. Copper-64 (64Cu) is a cyclotron-produced radionuclide that has exhibited physical properties that are complementary for diagnosis and/or therapeutic purposes. To date, very few reports have described the clinical development of 64Cu as a radiotracer for cancer imaging. In this review, we highlight recent insights in our understanding and use of 64CuCl2 as a theranostic agent for various types of tumors. To the best of our knowledge, no adverse effects or clinically observable pharmacological effects have been described for 64CuCl2 in the literature. Thus, 64Cu represents a revolutionary radiopharmaceutical for positron emission tomography imaging and opens a new era in the theranostic field.


Asunto(s)
Enfermedad de Alzheimer/tratamiento farmacológico , Radioisótopos de Cobre/uso terapéutico , Neoplasias/tratamiento farmacológico , Radiofármacos/uso terapéutico , Nanomedicina Teranóstica , Animales , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...